vol. 18 / 

Issue 4


Download the full version of the article (in PDF format)

G. A. Osamong, P. K. Kamweru, J. M. Gichumbi, W. K. Ngetich, F. G. Ndiritu
«Structural and Morphological Analysis of Copper-Doped Magnesium–Nickel Ferrite Nanoparticles»
0939–0951 (2020)

PACS numbers: 61.05.cp, 61.46.Df, 68.37.Hk, 68.37.Lp, 68.37.Og, 75.50.Tt, 78.30.-j

Nanoferrites are materials with the main element being iron and with, at least, one dimension less than 100 nm. They have superior magnetic, electronic, structural, morphological, and optical properties. These properties are ideal for electronic data devices’ fabrication among other application areas. The properties could be further tuned by doping with either trivalent or divalent elements. It is hypothesized based on existing literature that the capacities of ferrites could be stretched further to suit the application at hand by introducing dopant cations, change of method of applications that change the cation distribution in the tetrahedral or octahedral sites of the spinel cubic structure of ferrites. Consequently, the search for a perfect nanoferrite for application in electronics and for other applications continues. In this work, copper-doped magnesium–nickel ferrite nanoparticles with composition Cu\(_x\)Mg\(_{1-x}\)NiFe\(_2\)O\(_4\) (x=0.00, 0.15, 0.30, 0.45, 0.60, 0.75, 1.00) are prepared using autocombustion technique, using citric acid as a chelating agent with a maintained pH of 7, and calcined at 700°C. Elemental analysis confirmed the expected stoichiometry of the samples. The resulting powders were characterized by infrared spectroscopy (IR), Fourier transform infrared (FTIR), x-ray diffraction (XRD) techniques, and the morphology was determined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The XRD patterns of the samples show spinel cubic type of structure, depicted by the signature intense peaks at Miller indices (311) with the lattice parameter varying slightly with copper concentration and crystallite sizes in the range of 4.1–35.58 nm. FTIR showed dominant bonds between 400–499 cm\(^{-1}\) and 500–599 cm\(^{-1}\) as characteristic of a spinel ferrite. Morphological studies by high-resolution electron microscopy and scanning electron microscopy showed spherical nature of the samples, and particle size range between 16 nm and 45 nm as determined by ImageJ software. The data show that the synthesized ferrite Cu\(_x\)Mg\(_{1-x}\)NiFe\(_2\)O\(_4\) could be applied in memory and electronic storage devices as well as in high-density recording media.

Keywords: spinel ferrite, nanoparticles, structure, doping, morphology
1. I. Khan, K. Saeed, and I. Khan, Arabian Journal of Chemistry, 12, No. 7: 908 (2019);
2. C. Venkataraju, G. Sathishkumar, and K. Sivakumar, Journal of Magnetism and Magnetic Materials, 322, Iss. 2: 230 (2010);
3. R. M. Rosnan, Z. Othaman, R. Hussin, A. A. Ati, A. Samavati, S. Dabagh, and S. Zare, Chinese Physics B, 25, No. 4: 047501 (2016);
4. Y. K. Dasan, B. H. Guan, M. H. Zahari, and L. K. Chuan, PloS One, 12, No. 1: e0170075 (2017); doi: 10.1371/journal.pone.0170075
5. J. Jacob and M. A. Khadar, Journal of Applied Physics, 107, Iss. 11: 114310 (2010);
6. X. Zuo, A. Yang, C. Vittoria, and V. G. Harris, Journal of Applied Physics, 99, Iss. 8: 08M909 (2006);
7. P. P. Hankare, V. T. Vader, N. M. Patil, S. D. Jadhav, U. B. Sankpal, M. R. Kadam, and N. S. Gajbhiye, Materials Chemistry and Physics, 113, Iss. 1: 233 (2009);
8. T. Smitha, X. Sheena, P. J. Binu, and E. M. Mohammed, IOP Conference Series: Materials Science and Engineering, 73, No.1: 012094 (2015);
9. S. Y. Mulushoa, N. Murali, M. T. Wegayehu, S. J. Margarette, and K. Samatha, Results in Physics, 8: 772 (2018);
10. A. I. Ahmed, M. A. Siddig, A. A. Mirghni, M. I. Omer, and A. A. Elbadawi, Advances in Nanoparticles, 4, No. 2: 45 (2015); doi: 10.4236/anp.2015.42006
11. A. E. A. A. Said, M. M. A. El-Wahab, S. A. Soliman, and M. N. Goda, Nanoscience and Nanoengineering, 2, No.1: 17 (2014); doi:10.13189/nn.2014.020103
12. F. S. Tehrani, V. Daadmehr, A. T. Rezakhani, R. H. Akbarnejad, and S. Gholipour, Journal of Superconductivity and Novel Magnetism, 25, No. 7: 2443 (2012);
13. D. Cao, L. Pan, J. Li, X. Cheng, Z. Zhao, J. Xu, Q. Li, X. Wang, S. Li, J. Wang, and Q. Liu, Scientific Reports, 8, No. 1: 8989 (2018);
14. K. K. Kefeni, T. A. Msagati, and B. B. Mamba, Materials Science and Engineering: B, 215: 37 (2017);
15. A. Sutka and G. Mezinskis, Frontiers of Materials Science, 6, No. 2: 128 (2012);
16. S. Zahi, A. R. Daud, and M. Hashim, Materials Chemistry and Physics, 106, Iss. 2–3: 452 (2007);
17. T. Shanmugavel, S. Gokul Raj, G. Ramesh Kumar, and G. Rajarajan, Physics Procedia, 54: 159 (2014);
18. J. Azadmanjiri, H. K. Salehani, M. R. Barati, and F. Farzan, Materials Letters, 61, Iss. 1: 84 (2007);
19. Z. K. Heiba, M. B. Mohamed, A. M. Wahba, and L. Arda, Journal of Superconductivity and Novel Magnetism, 28, No. 8: 2517 (2015);
20. T. K. Pathak, N. H. Vasoya, V. K. Lakhani and K. B. Modi, Ceramics International, 36, Iss. 1: 275 (2010);
21. S. Thankachan, B. P. Jacob, S. Xavier, and E. M. Mohammed, Physica Scripta,
87, No. 2: 025701 (2013);
22. A. Maqsood and A. Faraz, Journal of Superconductivity and Novel Magnetism, 25, No. 5: 1025 (2012);
23. V. Jeseentharani, M. George, B. Jeyaraj, A. Dayalan, and K. S. Nagaraja, Journal of Experimental Nanoscience, 8, Iss. 3: 358 (2013);
24. R. Sridhar, D. Ravinder, and K. V. Kumar, Advances in Materials Physics and Chemistry, 2, No. 3: 192 (2012); doi: 10.4236/ampc.2012.23029
25. J. Balavijayalakshmi and M. J. Saranya, NanoSci. NanoTechno, 2, Iss. 4: 397 (2014).
26. D. Mott, J. Galkowski, L. Wang, J. Luo, and C. J. Zhong, Langmuir, 23, No. 10: 5740 (2007);
27. M. Maria Lumina Sonia, S. Blessi, and S. Pauline, International Journal of Research, 1, No. 8, Pt. 3: 70 (2014).
28. C. Venkataraju, G. Sathishkumar, and K. Sivakumar, Journal of Magnetism and Magnetic Materials, 322, Iss. 2: 230 (2010);
29. L. Khanna and S. K. Tripathi, Research Journal of Recent Sciences, 6, Iss. 2: 1 (2017); Microsoft Word - 1.ISCA-RJRS-2017-002.docx
30. A. Gaber, M. A. Abdel-Rahim, A. Y. Abdel-Latief, and M. N. Abdel-Salam, Int. J. Electrochem. Sci., 9: 81 (2014); 90100081.pdf (
31. N. Sanpo, C. Wen, C. C. Berndtn, and J. Wang, Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education (Spain: Formatex Research Centre: 2013), vol. 1, p. 239.
32. H. Arabi and N. Khalili Moghadam, Journal of Magnetism and Magnetic Materials, 335: 144 (2013);
33. S. Sagadevan, Z. Z. Chowdhury, and R. F. Rafique, Materials Research, 21, No. 2: e20160533 (2018);
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement