Issues

 / 

2020

 / 

vol. 18 / 

Issue 4

 



Download the full version of the article (in PDF format)

Y. Suchikova, I. Bogdanov, S. Kovachov, H. Lopatina, N. Tsybuliak, N. Panova
«Research of the Structure of Nanomaterials by Analysis of Micromorphology Images»
0875–0888 (2020)

PACS numbers: 07.05.Pj, 61.43.Gt, 68.37.Hk, 68.55.J-, 81.05.Rm, 81.16.Rf, 81.65.Cf

The modern challenge of materials science is the analysis of the surface of nanostructures, which is complicated by the small sizes of the nanoobjects and their number. In the presented study, we demonstrate a technique for evaluating the basic indices of the micromorphology of porous surfaces by analysing the microscopic image of the surface. Image processing and analysis software packages, such as ImageJ and Origin, are used for optimization, automation, and accuracy of analysis. Such an analysis allows us to evaluate the surface of nanostructures by various indicators: the shape and number of nanoobjects, their location and distribution by diameter, perimeter, etc. In addition, modelling the growth of nanoobjects in the depth of the crystal allows to trace the dynamics of the nanostructures’ synthesis process and to design nanostructures with predetermined parameters. Such studies are necessary to ensure reproducibility, uniformity, and accuracy of experiments for the fabrication of nanostructures at an industrial scale.

Keywords: nanostructures, image processing, microscopy, micromorphology, statistical processing

https://doi.org/10.15407/nnn.18.04.875
References
1. B. Karn, T. Kuiken, and M. Ott, Environmental Health Perspectives, 117, No. 12: 1813 (2009). https://doi.org/10.1289/ehp.0900793
2. C. Li, J. Lin, J. Mater. Chem., 20, No. 33: 6831 (2010). https://doi.org/10.1039/C0JM00031K
3. Y. Shi and B. Zhang, Chemical Society Reviews, 45, No. 6: 1529 (2016). https://doi.org/10.1039/C5CS00434A
4. S.-T. Ha, R. Su, J. Xing, Q. Zhang, and Q. Xiong, Chem. Sci., 8, No. 4: 2522 (2017). https://doi.org/10.1039/C6SC04474C
5. Y. Guo, K. Xu, Ch. Wu, J. Zhao, and Y. Xie, Chemical Society Reviews, 44, No. 3: 637 (2015). https://doi.org/10.1039/C4CS00302K
6. J. Wan, S. D. Lacey, Ji. Dai, W. Bao, M. S. Fuhrer, and L. Hu, Chemical Society Reviews, 45, No. 24: 6742 (2016). https://doi.org/10.1039/C5CS00758E
7. H. Yi, D. Huang, L. Qin, G. Zeng, C. Lai, M. Cheng, Sh. Ye, B. Song, X. Ren, and X. Guo, Applied Catalysis B: Environmental, 239: 408 (2018). https://doi.org/10.1016/j.apcatb.2018.07.068
8. Y. Suchikova, Eastern-European Journal of Enterprise Technologies, 84, No. 6/5: 26 (2016). https://doi.org/10.15587/1729-4061.2016.85848
9. S. Vambol, V. Vambol, I. Bogdanov, Y. Suchikova, and N. Rashkevich, EasternEuropean Journal of Enterprise Technologies, 90, No. 6/10: 57 (2017). https://doi.org/10.15587/1729-4061.2017.118213
10. P. Laux, J. Tentschert, Ch. Riebeling et al., Arch Toxicol, 92, No. 1: 121 (2018). https://doi.org/10.1007/s0020
11. Nanotechnology Products Database (NPD). http://product.statnano.com/
12. I. Bogdanov, Y. Suchikova, S. Vambol, V. Vambol, O. Kondratenko, O. Hurenko, and S. Onishchenko, Eastern-European Journal of Enterprise Technologies, 3, No. 5 (87): 37 (2017). https://doi.org/10.15587/1729-4061.2017.104039
13. Y. O. Suchikova, Journal of Nano- and Electronic Physics, 9, No. 1: 1006-1 (2017). https://doi.org/10.21272/jnep.9(1).01006
14. B. Liu and K. Zhou, Progress in Materials Science, 100: 99 (2018).
15. P. Figueiredo, K. Lintinen, J. T. Hirvonen, M. A. Kostiainen, and H. A. Santos, Progress in Materials Science, 93: 233 (2018). https://doi.org/10.1016/j.pmatsci.2017.12.001
16. G. Khrypunov, S. Vambol, N. Deyneko, and Y. Suchikova, Eastern-European Journal of Enterprise Technologies, 6, No. 5 (84): 12 (2016). https://doi.org/10.15587/1729-4061.2016.85617
17. Y. A. Suchikova, V. V. Kidalov, A. A. Konovalenko, and G. A. Sukach, ECS Transactions, 25, No. 24: 59 (2010).
18. J. Wang, R. Chen, L. Xiang, and S. Komarneni, Ceramics International, 44, No. 7: 7357 (2018). https://doi.org/10.1016/j.ceramint.2018.02.013
19. Y. A. Suchikova, V. V. Kidalov, and G. A. Sukach, Journal of Nano- and Electronic Physics, 1, No. 4: 111 (2009).
20. K. Omri, A. Bettaibi, K. Khirouni, and L. El Mir, Condensed Matter, 537: 167 (2018). https://doi.org/10.1016/j.physb.2018.02.025
21. S. Vambol, I.Bogdanov,V.Vambol, Y. Suchikova, H. Lopatina, and N.Tsybuliak, Eastern-European Journal of Enterprise Technologies, 6, No. 5 (90): 22 (2017). https://doi.org/10.15587/1729-4061.2017.118725
22. L. Huang, D. Santiago, P. Loyselle, and L. Dai, Small, 14, No. 43: 1800879 (2018). https://doi.org/10.1002/smll.201800879
23. S. Vambol, V. Vambol, Y. Suchikova, I. Bogdanov, and O. Kondratenko, Journal of Achievements in Materials and Manufacturing Engineering, 86, No. 2: 49 (2018).
24. S. O.Vambol,I. T.Bohdanov,V.V. Vambol,Y.O. Suchikova, O. M.Kondratenko, T. P. Nestorenko, and S. V. Onyschenko, Journal of Nano- and Electronic Physics, 9, No. 6: 06016-1(2017). https://doi.org/10.21272/jnep.10(4).04020
25. Ya. Suchikova, Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques (Eds. M. Aliofkhazraei and A. S. H. Makhlouf) (Cham: Springer: 2016), p. 283. https://doi.org/10.1007/978-3-319-15266-0_28
26. H. Choi, H. Kim, S. Hwang, W. Choi, and M. Jeon, Solar Energy Materials and Solar Cells, 95, No. 1: 323 (2011). https://doi.org/10.1016/j.solmat.2010.04.044
27. Y. Wang et al, Chem. Eng. J., 358: 74 (2019). https://doi.org/10.1016/j.cej.2018.10.002
28. J. Zhang, H. Li, Q. Kuang, and Z. Xie, Accounts Chem Res, 51, No. 11: 2880 (2018). https://doi.org/10.1021/acs.accounts.8b00344
29. Y. Suchikova, I. Bogdanov, S. Onishchenko, S. Vambol, V. Vambol, and O. Kondratenko, Proc. of the 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties (NAP-2017) (September 10–15,2017) (Sumy, Ukraine: 2017), p. 138.
30. Y. A. Suchikova, V. V. Kidalov, G. A. Sukach, Journal of Nano- and Electronic Physics, 2, No. 4: 142 (2010).
31. H. Fraoucene, D. Hatem, F. Vacandio, and M. Pasquinelli, Nanoscience & Nanotechnology–Asia, 9, No. 1: 121 (2019). https://doi.org/10.2174/2210681208666180411154247
32. H. Ayd?n, F. Yakuphanoglu, and C. Ayd?n, J. Alloys Compd., 773: 802 (2019). https://doi.org/10.1016/j.jallcom.2018.09.327
33. A. A. Thahe, N. Bidin, M. A. Al-Azawi, and N. M. Ahmed, Jurnal Teknologi, 78, No. 3: 60 (2016). https://doi.org/10.11113/jt.v78.7465
34. R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, Proc. of SPIE 10934, Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology (February 2–7, 2019) (San Francisco, United States: 2019), p. 109341.
35. K. Lima, Ch. Roppa, S. Barika, J. Fourkase, B. Shapirof, and E. Waksa, Nano Lett., 16, No. 9: 5415 (2016). https://doi.org/10.1021/acs.nanolett.6b01708
36. C. Kizilyaprak, A. G. Bittermann, J. Daraspe, and B. M. Humbel, Methods Mol. Biol., 1117: 541 (2014). https://doi.org/10.1007/978-1-62703-776-1_24
37. C. Villinger, H. Gregorius, C. Kranz, K. Hoehn, C. Muenzberg, G. von Wichert, B. Mizaikoff, G. Wanner, and P. Walther, Histochem. Cell Biol., 138: 549 (2012). https://doi.org/10.1007/s00418-012-1020-6
38. Z. S. Tang, N. Bolong, I. Saad, R. Ramli, and F. T. Y. Lim, Jurnal Teknologi, 78, No. 12: 19 (2016).
39. G. Guven and A. B. Oktay, 26th Signal Processing and Communications Applications Conference (SIU) (Izmir, Turkey: IEEE: 2018).
40. N. P. Yadav, X. Liu, W. Wang, K. Ullah, and B. Xu, J. Phys.: Conference Series. IOP Publishing, 844, No. 1: (2017).
41. K. Yang, Y. Tang, S. Hu, and C. Chen, Proc. of 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Meta-SurfaceWave and Planar Optics, International Society for Optics and Photonics (2019), p. 10841.
42. K. Yang, G. Yang, L. Chen, L. Cheng, L. Wang, C. Ge, and Z. Liu, Biomaterials, 38: 1 (2015). https://doi.org/10.1016/j.biomaterials.2014.10.052
43. X. Wu, H. Li, and N. Xiao, J. Photochem. Photobiol. B: Biology, 187: 89 (2018). https://doi.org/10.1016/j.jphotobiol.2018.07.015
44. J. E. Belizario, B. A. Sangiuliano, B. Viana-Santos, M. Perez-Sosa, and I. Caldeira, Technology, 5, No. 2: 61 (2017). https://doi.org/10.1142/S2339547817300037
45. X. Wu, H. Li, and N. Xiao, J. Photochem. Photobiol. B: Biology, 187: 89 (2018). https://doi.org/10.1016/j.jphotobiol.2018.07.015
46. P. Kunicki, Z. W. Kowalski, and T. Gotszalk, Przeglad Elektrotechniczny, 92, No. 8: 21 (2016). https://doi.org/10.15199/48.2016.08.06
47. T. Epicier, S. Koneti, P. Avenier, A. Cabiac, A. S. Gay, and L. Roiban, Catal. Today, 334, No. 15: 68 (2019). https://doi.org/10.1016/j.cattod.2019.01.061
48. S. M. Ghodsi, S. Anand, R. Shahbazian-Yassar, T. Shokuhfar, and C. M. Megaridis, ACS Nano, 13, No. 4: 4677 (2019) https://doi.org/10.1021/acsnano.9b00914
49. S. Y. Guan, H. S. Liao, B. J. Juang, S. C. Chin, T. M. Chuang, and C. S. Chang, Ultramicroscopy, 196: 180 (2019). https://doi.org/10.1016/j.ultramic.2018.10.008
50. A. M. Nazif and M. D. Levine, IEEE Transactions on Pattern Analysis and Machine Intelligence, 5: 555 (1984). https://doi.org/10.1109/TPAMI.1984.4767570
51. G. Wolberg, CA: IEEE Computer Society Press (Los Alamitos: 1990), ð. 10662.
52. J. L. Mundy, IEEE Expert, 10, No. 6: 64 (1995). https://doi.org/10.1109/64.483254
53. Science of Microscopy (Eds. P. W. Hawkes and J. C. H. Spence) (Springer Science & Business Media: 2008), p. 1228.
54. J. Bednarek, Probl. Forensic. Sci., 56: 65 (2004).
55. A. Kazak, S. Chugunov, and A. Chashkov, International Multidisciplinary Scientific GeoConference: SGEM–Surveying Geology & Mining Ecology Management, 17, Nos. 1–4: 821 (2017). https://doi.org/10.5593/sgem2017/14
56. Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques (Eds. M. Aliofkhazraei and A. S. H. Makhlouf) (Cham: Springer: 2016). https://doi.org/10.1007/978-3- 319-15266-0
57. S. Mollazadeh, J. Javadpour, and A. Khavandi, Ceram. Int., 33, Iss. 8: 1579 (2007). https://doi.org/10.1016/j.ceramint.2006.06.006
58. Y. Zhang, IEEE Computer Graphics and Applications, 16, No. 4: 34 (1996). https://doi.org/10.1109/38.511850
59. P. Schneider, M. Meier, R. Wepf, and R. Mueller, Bone, 49: 304 (2011). https://doi.org/10.1016/j.bone.2011.04.005
60. M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, Biophotonics International, 11, No. 7: 36 (2004).
61. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nature Methods, 9, No. 7: 671 (2012). https://doi.org/10.1038/nmeth.2089
62. T. J. Collins, Biotechniques, 43, No. 1: 25 (2007). https://doi.org/10.2144/000112517
63. M. Doube, M. M. Klosowski, I. Arganda-Carreras, F. P. Cordelieres, R. P. Dougherty, J. S. Jackson, B. Schmid, J. R. Hutchinson, and S. J. Shefelbine, Bone, 47, No. 6: 1076 (2010). https://doi.org/10.1016/j.bone.2010.08.023
64. T. Ferreira and W. Rasband, ImageJ/Fiji, 1: 155 (2012).
65. U. Kuila and M. Prasad, Geophysical Prospecting, 61, No. 2: 341 (2013). https://doi.org/10.1111/1365-2478.12028
66. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett., 49, No. 1: 57 (1982). https://doi.org/10.1103/PhysRevLett.49.57
67. J. S. Villarrubia, Journal of Research of the National Institute of Standards and Technology, 102, No. 4: 425 (1997). https://doi.org/10.6028/jres.102.030
68. P. A. Kohl, C. Wolowodiuk, and F. W. Ostermayer, J. Electrochem. Soc., 130, No. 11: 2288 (1983). https://doi.org/10.1149/1.2119571
69. N. Tarakina, Cryst. Growth Des., 12, No. 4: 1913 (2012). https://doi.org/10.1021/cg201636g
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement