vol. 18 / 

Issue 4


Download the full version of the article (in PDF format)

A. V. Dvornichenko, D. O. Kharchenko, V. O. Kharchenko
«Modelling of Dynamics of Formation and Growth of Nanoscale Surface Structures in ‘Plasma–Condensate’ Systems»
0775–0862 (2020)

PACS numbers: 05.40.-a, 05.65.+b, 68.35.Dv, 68.43.-h, 68.55.J-, 81.15.Aa, 82.40.Np

Theoretical studies of the dynamics of the adsorbate-concentration redistribution in ‘plasma–condensate’ systems are provided. We take into account anisotropy in the transitions of adatoms between the neighbour layers caused by the action of the external electric field near the substrate. A generalized theoretical model for describing the formation processes of spatial separated surface structures on one of the layers of a multilayer system is derived. Within the framework of the homogeneous system, the conditions of realization of the first-order plasma–condensate transitions are established. Assuming that the anisotropy force changes in time periodically and stochastically, the dependence of the transition time of the system from the low adsorbate state to the high adsorbate state on the external periodic and stochastic loading parameters is investigated. By using the stability analysis of the homogeneous stationary states with respect to inhomogeneous perturbations, the conditions for structuring the growing surface are established. Within the framework of the numerical simulation procedure, the control regimes for the dynamics of surface structuring, surface morphology, type and size of surface structures are revealed. The influences of the pressure inside the chamber, the interaction energy of the adsorbate, the average value of the electric-field strength on the statistical properties of nanostructured thin films in plasma–condensate systems are established. The generalization of the model by considering fluctuations of the surface flow of the adsorbate is carried out, and the influence of their intensity on the morphological transformations in the structure of the layer surface, the type and linear size of surface structures, their number and distribution of structures by size is revealed. The influence of fluctuations of the electric field near the substrate on the dynamics of the adsorbate ordering over the surface and the statistical properties of surface structures during condensation is studied. The competitive influence of regular and stochastic parts of the external flow on the dynamics of the system is investigated. The ability of fluctuations to induce processes of surface-structures’ formation, to control the dynamics of structure formation, spatial order, surface morphology, the law of growth of the average size of adsorbate islands, the type and linear size of surface structures is analysed. Within the multilayer model, the dynamics of spatial redistribution of the adsorbate on each layer of the multilayer ‘plasma–condensate’ system is analysed.

Keywords: ‘plasma–condensate’ systems, condensation, adsorbate, adsorption–desorption processes, nanosize surface structures, surface morphology
1. M. Ohring, Materials Science of Thin Films (New York: Academic Press: 2001).
2. E. Hirota, Giant Magneto-Resistance Devices (Berlin: Springer: 2002).
3. R. J. Warburton, C. Schaflein, D. Haft et al., Nature, 405: 926 (2000);
4. A. Shah, P. Torres, R. Tscharner et al., Science, 285: 692 (1999).
5. Li-Dong Zhao, Shih-Han Lo, Yongsheng Zhang et al., Nature, 508: 373 (2014).
6. S. A. Campbell, The Science and Engineering of Microelectronic Fabrication (New York: Oxford University Press: 1996).
7. J. Masalski, J. Gluszek, J. Zabrzeski et al., Thin Solid Films, 349: 186 (1999).
8. P. Vitanov, A. Harizanova, T. Ivanova, and T. Dimitrova, Thin Solid Films, 517: 6327 (2009).
9. A. K. Chin, G. Zydzik, S. Singh et al., J. Vac. Sci. Technol. B, 1: 72 (1983).
10. K. Mumtaz, J. Echigoya and H. Enoki et al., J. Mater. Sci., 31: 5247 (1996).
11. J. Gottmann, A. Husmann, T. Klotzbiicher, and E. W. Kreutz, Eur. Phys. J. Appl. Phys., 101: 1 (1998).
12. S. Carmona-Tellez, J. Guzman-Mendoza, M. Aguilar-Frutis et al., J. Appl. Phys., 103: 34105 (2008).
13. M. Aguilar-Frutis, M. Garcia, C. Falcony et al., Thin Solid Films, 389: 200 (2001).
14. B. P. Dhonge, T. Mathews, S. T. Sundari et al., Appl. Surf. Sci., 258: 1091 (2011).
15. J. C. Ortiz and A. Alonso, J. Mater. Sci. Mater. Electron., 13: 7 (2002).
16. Y. Wu and K. L. Choy, Surf. Coatings Technol., 180–181: 436 (2004).
17. V. I. Perekrestov, A. I. Olemskoi, Yu. O. Kosminska, and A. A. Mokrenko, PhysicsLettersA,373:3386(2009).
18. Y. A. Kosminska, A. A. Mokrenko, and V. I. Perekrestov, Tech. Phys. Lett., 37: 538 (2011).
19. A. G. Zhiglinskiy and V. V. Kuchinskiy, Mass Transfer at an Interaction of Plasma with Surface (Moscow: Energoizdat: 1991).
20. K. Pohl, M. C. Bartelt, J. de la Figuera et al., Nature, 397: 238 (1999).
21. Y. W. Mo, B. S. Swartzentruber, R. Kariotis et al., Phys. Rev. Lett., 63: 2393 (1989).
22. G. E. Cirlin, V. A. Egorov, L. V. Sokolov, and P. Werner, Semiconductors, 36: 1294 (2002).
23. J. P. Bucher, E. Hahn, P. Fernandez et al., Europhys. Lett., 27: 473 (1994).
24. V. Gorodetskii, J. Lauterbach, H. A. Rotermund et al., Nature, 370: 276 (1994).
25. K. Kern, H. Niehus, A. Schatz et al., Phys. Rev. Lett., 67: 855 (1991).
26. T. M. Parker, L. K. Wilson, N. G. Condon, and F. M. Leibsle, Phys. Rev. B, 56: 6458 (1997).
27. H. Brune, M. Giovannini, K. Bromann, and K. Kern, Nature, 394: 451 (1998).
28. P. G. Clark and C. M. Friend, J. Chem. Phys., 111: 6991 (1999).
29. P. Marchand, I. A. Hassan, I. P. Parkin, and C. J. Carmalt, Dalton Trans., 42: 9406 (2013). doi:10.1039/c3dt50607j
30. M. Hildebrand, A. S. Mikhailov, and G. Ertl, Phys. Rev. E, 58: 5483 (1998).
31. M. Hildebrand and A. S. Mikhailov, J. Phys. Chem., 100: 19089 (1996).
32. D. Batogkh, M. Hildebrant, F. Krischer, and A. Mikhailov, Phys. Rep., 288: 435 (1997).
33. M. Hildebrand, A. S. Mikhailov, and G. Ertl, Phys. Rev. Lett., 81: 2602 (1998).
34. A. Mikhailov and G. Ertl, Chem. Phys. Lett., 238: 104 (1994).
35. V. O. Kharchenko, D. O. Kharchenko, S. V. Kokhan et al., Physica Scripta, 86: 055401 (2012).
36. V. O. Kharchenko and D. O. Kharchenko, Phys. Rev. E, 86: 041143 (2012).
37. V. O. Kharchenko, D. O. Kharchenko, and A. V. Dvornichenko, Surface Science, 630: 158 (2014).
38. S. B. Casal, H. S. Wio, and S. Mangioni, Physica A, 311: 443 (2002).
39. V. O. Kharchenko, D. O. Kharchenko, Surface Science, 637–638: 90 (2015).
40. D. Walgraef, Physica E, 18: 393 (2003).
41. D. Walgraef, Int. J. Quantum Chem., 98: 248 (2004).
42. L. Benning and G. Waychunas, Nucleation, Growth, and Aggregation of Mineral Phases: Mechanisms and Kinetic Controls. Kinetics of Water–Rock Interaction (Eds. S. Brantley, J. Kubicki, and A. White) (New York: Springer: 2008).
43. R. Ferrando, J. Jellinek, and R. L. Johnston, Chem. Rev., 108: 845 (2008).
44. J. Jortner, Z. Phys. D: At. Mol. Clusters, 24: 247 (1992).
45. R. G. Chaudhuri and S. Paria, Chem. Rev., 112: 2373 (2012).
46. R. L. Johnston, Philos. Trans. R. Soc. London. Ser. A, 356: 211 (1998).
47. V. O. Kharchenko, D. O. Kharchenko, and V. V. Yanovsky, Nanoscale Research Letters, 12: 337 (2017).
48. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys., 65: 851 (1993).
49. V. I. Perekrestov, Yu. O. Kosminska, and A. S. Kornyushchenko et al., Physica B, 411: 140 (2013).
50. D. Leonhardt and S. M. Han, Surf. Sci., 603: 2624 (2009).
51. R. Gomer, Rep. Prog. Phys., 53: 917 (1990).
52. J. A. Sierra and H. S. Wio, Cent. Eur. J. Phys., 10: 625 (2012). DOI: 10.2478/s11534-012-0021-3
53. M. C. Gimenez, Eur. Phys. J. B, 89: 83 (2016).
54. H. S. Wio, Phys. Rev. E, 55: R3075 (1996).
55. F. Castelpoggi and H. S. Wio, Europhysics Letters, 38: 91 (1997).
56. P. Jung and G. Mayer-Kress, Phys. Rev. Lett., 74: 2130 (1995).
57. J. Wang, S. Kadar, P. Jung, and K. Showalter, Phys. Rev. Lett., 82: 855 (1999).
58. Z. Hou and H. Xin, Phys. Rev. Lett., 89: 280601 (2002).
59. H. Hempel, L. Schimansky-Geier, and J. Garcia-Ojalvo, Phys. Rev. Lett., 82: 3713 (1999).
60. T. Biancalani, L. Dyson, and A. J. McKane, Phys. Rev. Lett., 112: 038101 (2014).
61. T. Weiss, A. Kronwald, and F. Marquardt, New J. Phys. 18: 1 (2015).
62. D. O. Kharchenko, V. O. Kharchenko, and I. O. Lysenko, Physica Scripta, 83: 045802 (2011).
63. W. Horsthemke and R. Lefever, Noise-Induced Transitions (Berlin: Springer-Verlag: 1984).
64. J. Garcia-Ojalvo and J. M. Sancho, Noise in Spatially Extended System (New York: Springer-Verlag: 1999).
65. C. Van der Broeck, Phys. Rev. Lett., 73: 3395 (1994).
66. C. Van der Broeck et al., Phys. Rev. E, 55: 4084 (1997).
67. J. Garcia-Ojalvo, A. Hernandez-Machado, and J. M. Sancho, Phys. Rev. Lett., 71: 1542 (1993).
68. A. Becker and L. Kramer, Phys. Rev. Lett., 73: 955 (1994).
69. J. M. R. Parrondo, C. Van den Broeck, J. Buceta, and F. J. de la Rubia, Physica A, 224: 153 (1996).
70. A.A. Zaikin and L. Schimansky-Geier, Phys. Rev. E, 58: 4355 (1998).
71. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (Amsterdam: North Holland: 1992).
72. D. Walgraef, Spatio-Temporal Pattern Formation (New York: SpringerVerlag: 1997).
73. V. O. Kharchenko, A. V. Dvornichenko, and V. N. Borysiuk, Eur. Phys. J. B,91: 93 (2018).
74. J. Swift and P. C. Hohenberg, Phys. Rev. A, 15: 319 (1977).
75. J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton, Phys. Rev. A, 26: 1589 (1982).
76. G. E. P. Box and M. E. Muller, Ann. Math. Stat., 29: 610 (1958).
77. V. O. Kharchenko and A. V. Dvornichenko, Eur. Phys. J. B, 92: 57 (2019).
78. Y. Lei, A. Uhl, C. Becker et al., Phys. Chem. Chem. Phys., 12: 1264 (2010).
79. X. Lai, T. P. St. Clair, and D. W. Goodman, Faraday Discuss., 114: 279 (1999).
80. L. Mangolini, Journal of Physics D, 50: 373003 (2017).
81. K. I. Hunter, J. T. Held, K. A. Mkhoyan, and U. R. Kortshagen, ACS Appl. Mater. Interfaces, 9: 8263 (2017).
82. V. I. Perekrestov, Yu. O. Kosminska, A. A. Mokrenko et al., Vacuum, 86: 111 (2011).
83. A. S. Kornyushchenko, V. V. Natalich, and V. I. Perekrestov, Journal of Crystal Growth, 442: 68 (2016).
84. S. A. Kukushkin and A. V. Osipov, Physics Uspekhi, 41: 983 (1998).
85. S. A. Kukushkin and A. V. Osipov, JETP, 86: 1201 (1998).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement