Issues

 / 

2020

 / 

vol. 18 / 

Issue 4

 



Download the full version of the article (in PDF format)

A. V. Dvornichenko, D. O. Kharchenko, V. O. Kharchenko
«Modelling of Dynamics of Formation and Growth of Nanoscale Surface Structures in ‘Plasma–Condensate’ Systems»
0775–0862 (2020)

PACS numbers: 05.40.-a, 05.65.+b, 68.35.Dv, 68.43.-h, 68.55.J-, 81.15.Aa, 82.40.Np

Theoretical studies of the dynamics of the adsorbate-concentration redistribution in ‘plasma–condensate’ systems are provided. We take into account anisotropy in the transitions of adatoms between the neighbour layers caused by the action of the external electric field near the substrate. A generalized theoretical model for describing the formation processes of spatial separated surface structures on one of the layers of a multilayer system is derived. Within the framework of the homogeneous system, the conditions of realization of the first-order plasma–condensate transitions are established. Assuming that the anisotropy force changes in time periodically and stochastically, the dependence of the transition time of the system from the low adsorbate state to the high adsorbate state on the external periodic and stochastic loading parameters is investigated. By using the stability analysis of the homogeneous stationary states with respect to inhomogeneous perturbations, the conditions for structuring the growing surface are established. Within the framework of the numerical simulation procedure, the control regimes for the dynamics of surface structuring, surface morphology, type and size of surface structures are revealed. The influences of the pressure inside the chamber, the interaction energy of the adsorbate, the average value of the electric-field strength on the statistical properties of nanostructured thin films in plasma–condensate systems are established. The generalization of the model by considering fluctuations of the surface flow of the adsorbate is carried out, and the influence of their intensity on the morphological transformations in the structure of the layer surface, the type and linear size of surface structures, their number and distribution of structures by size is revealed. The influence of fluctuations of the electric field near the substrate on the dynamics of the adsorbate ordering over the surface and the statistical properties of surface structures during condensation is studied. The competitive influence of regular and stochastic parts of the external flow on the dynamics of the system is investigated. The ability of fluctuations to induce processes of surface-structures’ formation, to control the dynamics of structure formation, spatial order, surface morphology, the law of growth of the average size of adsorbate islands, the type and linear size of surface structures is analysed. Within the multilayer model, the dynamics of spatial redistribution of the adsorbate on each layer of the multilayer ‘plasma–condensate’ system is analysed.

Keywords: ‘plasma–condensate’ systems, condensation, adsorbate, adsorption–desorption processes, nanosize surface structures, surface morphology

https://doi.org/10.15407/nnn.18.04.775
References
1. M. Ohring, Materials Science of Thin Films (New York: Academic Press: 2001).
2. E. Hirota, Giant Magneto-Resistance Devices (Berlin: Springer: 2002).
3. R. J. Warburton, C. Schaflein, D. Haft et al., Nature, 405: 926 (2000); https://doi.org/10.1038/35016030
4. A. Shah, P. Torres, R. Tscharner et al., Science, 285: 692 (1999). https://doi.org/10.1126/science.285.5428.692
5. Li-Dong Zhao, Shih-Han Lo, Yongsheng Zhang et al., Nature, 508: 373 (2014). https://doi.org/10.1038/nature13184
6. S. A. Campbell, The Science and Engineering of Microelectronic Fabrication (New York: Oxford University Press: 1996).
7. J. Masalski, J. Gluszek, J. Zabrzeski et al., Thin Solid Films, 349: 186 (1999). https://doi.org/10.1016/S0040-6090(99)00230-8
8. P. Vitanov, A. Harizanova, T. Ivanova, and T. Dimitrova, Thin Solid Films, 517: 6327 (2009). https://doi.org/10.1016/j.tsf.2009.02.085
9. A. K. Chin, G. Zydzik, S. Singh et al., J. Vac. Sci. Technol. B, 1: 72 (1983). https://doi.org/10.1116/1.582507
10. K. Mumtaz, J. Echigoya and H. Enoki et al., J. Mater. Sci., 31: 5247 (1996). http://dx.doi.org/10.1016/0925-8388(94)91114-2
11. J. Gottmann, A. Husmann, T. Klotzbiicher, and E. W. Kreutz, Eur. Phys. J. Appl. Phys., 101: 1 (1998). https://doi.org/10.1051/epjap/2013120530
12. S. Carmona-Tellez, J. Guzman-Mendoza, M. Aguilar-Frutis et al., J. Appl. Phys., 103: 34105 (2008). https://doi.org/10.1063/1.2838467
13. M. Aguilar-Frutis, M. Garcia, C. Falcony et al., Thin Solid Films, 389: 200 (2001). https://doi.org/10.1016/S0040-6090(01)00854-9
14. B. P. Dhonge, T. Mathews, S. T. Sundari et al., Appl. Surf. Sci., 258: 1091 (2011). https://doi.org/10.1016/j.apsusc.2011.09.040
15. J. C. Ortiz and A. Alonso, J. Mater. Sci. Mater. Electron., 13: 7 (2002). https://doi.org/10.1007/s10853-006-0004-0
16. Y. Wu and K. L. Choy, Surf. Coatings Technol., 180–181: 436 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.078
17. V. I. Perekrestov, A. I. Olemskoi, Yu. O. Kosminska, and A. A. Mokrenko, PhysicsLettersA,373:3386(2009). https://doi.org/10.1016/j.physleta.2009.07.032
18. Y. A. Kosminska, A. A. Mokrenko, and V. I. Perekrestov, Tech. Phys. Lett., 37: 538 (2011). https://doi.org/10.1134/S1063785011060083
19. A. G. Zhiglinskiy and V. V. Kuchinskiy, Mass Transfer at an Interaction of Plasma with Surface (Moscow: Energoizdat: 1991).
20. K. Pohl, M. C. Bartelt, J. de la Figuera et al., Nature, 397: 238 (1999). https://doi.org/10.1038/16667
21. Y. W. Mo, B. S. Swartzentruber, R. Kariotis et al., Phys. Rev. Lett., 63: 2393 (1989). https://doi.org/10.1103/PhysRevLett.63.2393
22. G. E. Cirlin, V. A. Egorov, L. V. Sokolov, and P. Werner, Semiconductors, 36: 1294 (2002). https://doi.org/10.1134/1.1521233
23. J. P. Bucher, E. Hahn, P. Fernandez et al., Europhys. Lett., 27: 473 (1994). https://doi.org/10.1209/0295-5075/27/6/011
24. V. Gorodetskii, J. Lauterbach, H. A. Rotermund et al., Nature, 370: 276 (1994). https://doi.org/10.1038/370276a0
25. K. Kern, H. Niehus, A. Schatz et al., Phys. Rev. Lett., 67: 855 (1991). https://doi.org/10.1103/PhysRevLett.67.855
26. T. M. Parker, L. K. Wilson, N. G. Condon, and F. M. Leibsle, Phys. Rev. B, 56: 6458 (1997). https://doi.org/10.1103/PhysRevB.56.6458
27. H. Brune, M. Giovannini, K. Bromann, and K. Kern, Nature, 394: 451 (1998). https://doi.org/10.1038/28804
28. P. G. Clark and C. M. Friend, J. Chem. Phys., 111: 6991 (1999). https://doi.org/10.1063/1.479992
29. P. Marchand, I. A. Hassan, I. P. Parkin, and C. J. Carmalt, Dalton Trans., 42: 9406 (2013). doi:10.1039/c3dt50607j
30. M. Hildebrand, A. S. Mikhailov, and G. Ertl, Phys. Rev. E, 58: 5483 (1998). https://doi.org/10.1103/PhysRevE.58.5483
31. M. Hildebrand and A. S. Mikhailov, J. Phys. Chem., 100: 19089 (1996). https://doi.org/10.1021/jp961668w
32. D. Batogkh, M. Hildebrant, F. Krischer, and A. Mikhailov, Phys. Rep., 288: 435 (1997). https://doi.org/10.1016/S0370-1573(97)00036-7
33. M. Hildebrand, A. S. Mikhailov, and G. Ertl, Phys. Rev. Lett., 81: 2602 (1998). https://doi.org/10.1103/PhysRevLett.81.2602
34. A. Mikhailov and G. Ertl, Chem. Phys. Lett., 238: 104 (1994). https://doi.org/10.1016/0009-2614(95)00386-X
35. V. O. Kharchenko, D. O. Kharchenko, S. V. Kokhan et al., Physica Scripta, 86: 055401 (2012). https://doi.org/10.1088/0031-8949/86/05/055401
36. V. O. Kharchenko and D. O. Kharchenko, Phys. Rev. E, 86: 041143 (2012). https://doi.org/10.1103/PhysRevE.86.041143
37. V. O. Kharchenko, D. O. Kharchenko, and A. V. Dvornichenko, Surface Science, 630: 158 (2014). https://doi.org/10.1016/j.susc.2014.08.008
38. S. B. Casal, H. S. Wio, and S. Mangioni, Physica A, 311: 443 (2002). https://doi.org/10.1016/S0378-4371(02)00828-2
39. V. O. Kharchenko, D. O. Kharchenko, Surface Science, 637–638: 90 (2015). https://doi.org/10.1016/j.susc.2015.03.025
40. D. Walgraef, Physica E, 18: 393 (2003). https://doi.org/10.1016/S1386-9477(01)00492-1
41. D. Walgraef, Int. J. Quantum Chem., 98: 248 (2004). https://doi.org/10.1002/qua.10877
42. L. Benning and G. Waychunas, Nucleation, Growth, and Aggregation of Mineral Phases: Mechanisms and Kinetic Controls. Kinetics of Water–Rock Interaction (Eds. S. Brantley, J. Kubicki, and A. White) (New York: Springer: 2008).
43. R. Ferrando, J. Jellinek, and R. L. Johnston, Chem. Rev., 108: 845 (2008). https://doi.org/10.1021/cr040090g
44. J. Jortner, Z. Phys. D: At. Mol. Clusters, 24: 247 (1992). https://doi.org/10.1007/BF01425749
45. R. G. Chaudhuri and S. Paria, Chem. Rev., 112: 2373 (2012). https://doi.org/10.1021/cr100449n
46. R. L. Johnston, Philos. Trans. R. Soc. London. Ser. A, 356: 211 (1998). https://doi.org/10.1098/rsta.1998.0158
47. V. O. Kharchenko, D. O. Kharchenko, and V. V. Yanovsky, Nanoscale Research Letters, 12: 337 (2017). https://doi.org/10.1186/s11671-017-2096-7
48. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys., 65: 851 (1993). https://doi.org/10.1103/RevModPhys.65.851
49. V. I. Perekrestov, Yu. O. Kosminska, and A. S. Kornyushchenko et al., Physica B, 411: 140 (2013). https://doi.org/10.1016/j.physb.2012.11.036
50. D. Leonhardt and S. M. Han, Surf. Sci., 603: 2624 (2009). https://doi.org/10.1016/j.susc.2009.06.015
51. R. Gomer, Rep. Prog. Phys., 53: 917 (1990). https://doi.org/10.1088/0034-4885/53/7/002
52. J. A. Sierra and H. S. Wio, Cent. Eur. J. Phys., 10: 625 (2012). DOI: 10.2478/s11534-012-0021-3
53. M. C. Gimenez, Eur. Phys. J. B, 89: 83 (2016). https://doi.org/10.1140/epjb/e2016-60965-1
54. H. S. Wio, Phys. Rev. E, 55: R3075 (1996). https://doi.org/10.1103/PhysRevE.54.R3075
55. F. Castelpoggi and H. S. Wio, Europhysics Letters, 38: 91 (1997). https://doi.org/10.1209/epl/i1997-00206-0
56. P. Jung and G. Mayer-Kress, Phys. Rev. Lett., 74: 2130 (1995). https://doi.org/10.1103/PhysRevLett.74.2130
57. J. Wang, S. Kadar, P. Jung, and K. Showalter, Phys. Rev. Lett., 82: 855 (1999). https://doi.org/10.1103/PhysRevLett.82.855
58. Z. Hou and H. Xin, Phys. Rev. Lett., 89: 280601 (2002). https://doi.org/10.1103/PhysRevLett.89.280601
59. H. Hempel, L. Schimansky-Geier, and J. Garcia-Ojalvo, Phys. Rev. Lett., 82: 3713 (1999). https://doi.org/10.1103/PhysRevLett.82.3713
60. T. Biancalani, L. Dyson, and A. J. McKane, Phys. Rev. Lett., 112: 038101 (2014). https://doi.org/10.1103/PhysRevLett.112.038101
61. T. Weiss, A. Kronwald, and F. Marquardt, New J. Phys. 18: 1 (2015). https://doi.org/10.1088/1367-2630/18/1/013043
62. D. O. Kharchenko, V. O. Kharchenko, and I. O. Lysenko, Physica Scripta, 83: 045802 (2011). https://doi.org/10.1088/0031-8949/83/04/045802
63. W. Horsthemke and R. Lefever, Noise-Induced Transitions (Berlin: Springer-Verlag: 1984).
64. J. Garcia-Ojalvo and J. M. Sancho, Noise in Spatially Extended System (New York: Springer-Verlag: 1999).
65. C. Van der Broeck, Phys. Rev. Lett., 73: 3395 (1994). https://doi.org/10.1103/PhysRevLett.73.3395
66. C. Van der Broeck et al., Phys. Rev. E, 55: 4084 (1997). https://doi.org/10.1103/PhysRevE.55.4084
67. J. Garcia-Ojalvo, A. Hernandez-Machado, and J. M. Sancho, Phys. Rev. Lett., 71: 1542 (1993). https://doi.org/10.1103/PhysRevLett.71.1542
68. A. Becker and L. Kramer, Phys. Rev. Lett., 73: 955 (1994). https://doi.org/10.1103/PhysRevLett.73.955
69. J. M. R. Parrondo, C. Van den Broeck, J. Buceta, and F. J. de la Rubia, Physica A, 224: 153 (1996). https://doi.org/10.1016/0378-4371(95)00350-9
70. A.A. Zaikin and L. Schimansky-Geier, Phys. Rev. E, 58: 4355 (1998). https://doi.org/10.1103/PhysRevE.58.4355
71. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (Amsterdam: North Holland: 1992).
72. D. Walgraef, Spatio-Temporal Pattern Formation (New York: SpringerVerlag: 1997).
73. V. O. Kharchenko, A. V. Dvornichenko, and V. N. Borysiuk, Eur. Phys. J. B,91: 93 (2018). https://doi.org/10.1140/epjb/e2018-80730-8
74. J. Swift and P. C. Hohenberg, Phys. Rev. A, 15: 319 (1977). https://doi.org/10.1103/PhysRevA.15.319
75. J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton, Phys. Rev. A, 26: 1589 (1982). https://doi.org/10.1103/PhysRevA.26.1589
76. G. E. P. Box and M. E. Muller, Ann. Math. Stat., 29: 610 (1958). https://doi.org/10.1214/aoms/1177706645
77. V. O. Kharchenko and A. V. Dvornichenko, Eur. Phys. J. B, 92: 57 (2019). https://doi.org/10.1140/epjb/e2019-90588-9
78. Y. Lei, A. Uhl, C. Becker et al., Phys. Chem. Chem. Phys., 12: 1264 (2010). https://doi.org/10.1039/B914323H
79. X. Lai, T. P. St. Clair, and D. W. Goodman, Faraday Discuss., 114: 279 (1999). https://doi.org/10.1039/A902795E
80. L. Mangolini, Journal of Physics D, 50: 373003 (2017). https://doi.org/10.1088/1361-6463/aa812e
81. K. I. Hunter, J. T. Held, K. A. Mkhoyan, and U. R. Kortshagen, ACS Appl. Mater. Interfaces, 9: 8263 (2017). https://doi.org/10.1021/acsami.6b16170
82. V. I. Perekrestov, Yu. O. Kosminska, A. A. Mokrenko et al., Vacuum, 86: 111 (2011). https://doi.org/10.1016/j.vacuum.2011.05.003
83. A. S. Kornyushchenko, V. V. Natalich, and V. I. Perekrestov, Journal of Crystal Growth, 442: 68 (2016). https://doi.org/10.1016/j.jcrysgro.2016.02.033
84. S. A. Kukushkin and A. V. Osipov, Physics Uspekhi, 41: 983 (1998). https://doi.org/10.1070/PU1998v041n10ABEH000461
85. S. A. Kukushkin and A. V. Osipov, JETP, 86: 1201 (1998). https://doi.org/10.1134/1.558591
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement