Issues

 / 

2020

 / 

vol. 18 / 

Issue 3

 



Download the full version of the article (in PDF format)

M. V. Kovalenko, O. V. Bovgyra, V. Ye. Dzikovskyi, R. V. Bovhyra
«Electronic Structure of Nanoporous Zinc Oxide»
727–741 (2020)

PACS numbers: 61.43.Bn, 61.48.-c, 62.23.St, 71.15.Dx, 71.15.Mb, 71.20.Nr, 82.75.Fq

Nanoporous phases or polymorphs are different inorganic solid structures of the same composition with corresponding bulk crystal usually have vary properties and applications. Thereby, synthesizing or predicting new classes of nanophases for an individual compound are of extensive significance and have been attaining appreciable interest. A few assembled nanoporous phases (SOD, LTA and FAU) based on fullerene-like nanoclusters of ZnO with novel structures and properties have been predicted using a bottomup approach within the density functional theory with Hubbard corrections for Coulomb interaction (GGA + U method). Among these structures, three phases are reported for the first time (CAN, LOS and FRA), which could considerably extend the family of nanoporous phases of ZnO. We also show that all these nanoporous phases can be classified analogically to the aluminosilicate-zeolites inorganic open-framework compounds. The structural and electronic properties of these nanoporous ZnO phases have been investigated. The hollow cage structures of the appropriate building block are well saved in all of them that leads to their high elasticity and flexibility as well as low-density nanoporosity. Furthermore, the electronic properties of the separate components are also preserved. The band analysis detects that these new nanophases are semi-conductive with large value of band gap comparing to a bulk crystal of ZnO. We suggest that nanoporous character of such structures could be applied as a band-gap engineering method for morphologically and electronically oriented functional materials. Furthermore, due to nanoporosity of these phases, it could be used for gas separation, heterogeneous catalysis, water purification, batteries, etc. In addition, such researches provide a basis for further successful building of other nanoporous phases of semiconducting IIVI compounds, where different nanophases might be also observed.

Keywords: ZnO, nanoporous phase, electronic properties, DFT, Hubbard corrections, band gap

https://doi.org/10.15407/nnn.18.03.727
References
1. M. Willander, Zinc Oxide Nanostructures: Advances and Applications (Singapore:Pan Stanford Publisher: 2014).
2. Y. B. Hahn, Korean J. Chem. Eng., 28, No. 9: 1797 (2011); https://doi.org/10.1007/s11814-011-0213-3.
3. A. Kolodziejczak-Radzimska and M. Jesionowski, Materials, 7: 2833 (2014); https://doi.org/10.3390/ma7042833.
4. J. Carrasco, F. Illas, and S. T. Bromley, Phys. Rev. Lett., 99: 235502 (2007); https://doi.org/10.1103/PhysRevLett.99.235502.
5. M. Woodley and R. Catlow, R. Nat. Mater., 7: 937 (2008); https://doi.org/10.1038/nmat2321.
6. S. M. Woodley, M. B. Watkins, A. A. Sokol, S. A. Shevlin, andC. R. A. Catlow, Phys. Chem. Chem. Phys., 11: 3176 (2009); https://doi.org/10.1039/b902600b.
7. Y. Yong, B. Song, and P. He, J. Phys. Chem. C, 115: 6455 (2011); https://doi.org/10.1021/jp200780k.
8. Z. Liu, X. Wang, J. Cai, G. Liu, P. Zhou, K. Wang, and H. Zhu, J. Phys.Chem. C, 117: 17633 (2013); https://doi.org/10.1021/jp405084r.
9. P. Guo, J. Shin, A. Greenaway, J. Gi Min, J. Su, H. J. Choi, L. Liu,P. A. Cox, S. B. Hong, P. Wright A, and X. Zou, Nature, 524: 74 (2015); https://doi.org/10.1038/nature14575.
10. W. J. Roth, P. Nachtigall, R. E. Morris, P. S. Wheatley, V. R. Seymour,S. E. Ashbrook, P. Chlubna, L. Grajciar, M. Polozij, A. Zukal, O. Shvets,and J. Cejka, Nature Chemistry, 5: 628 (2013); https://doi.org/10.1038/nchem.1662.
11. Ch. Baerlocher and L.B. McCusker, Database of Zeolite Structures, http://www.izastructure.org/databases/.
12. I. Demiroglu, S. Tosoni, F. Illas, and S. T. Bromley, Nanoscale, 6: 1181(2014); https://doi.org/10.1039/C3NR04028C.
13. P. Giannozzi, O. Andreussi, T. Brumme et al., J. Phys. Condens. Matter, 29:465901 (2017); https://doi.org/10.1088/1361-648X/aa8f79.
14. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.
15. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13: 5188 (1971); https://doi.org/10.1103/PhysRevB.13.5188.
16. D. Vanderbilt, Phys. Rev. B, 41: 7892 (1990); https://doi.org/10.1103/PhysRevB.41.7892.
17. M. Cococcioni and S. de Gironcoli, Phys. Rev. B, 71: 035105 (2005); https://doi.org/10.1103/PhysRevB.71.035105.
18. O. V. Bovgyra and M. V. Kovalenko, 2015 International Young ScientistsForum on Applied Physics (YSF) (Dnipropetrovsk, 2015), p. 1; https://doi.org/10.1109/YSF.2015.7333157.
19. O. V. Bovgyra and M. V. Kovalenko, J. Nano- Electron. Phys., 8: 2031(2016); https://doi.org/10.21272/jnep.8(2).02031.740 . . A, . . A, . . Dz, . . A
20. O. Bovgyra, M. Kovalenko, R. Bovhyra, and V. Dzikovskyi, J. Phys. Stud.,23: 4301 (2019); https://doi.org/10.30970/jps.23.4301.
21. R. Bovhyra, D. Popovych, O. Bovgyra, and A. Serednytsky, Applied Nano-science, 9, No. 5: (1967); https://doi.org/10.1007/s13204-018-0706-z.
22. O. Bovgyra, M. Kovalenko, V. Dzikovskyi, and M. Moroz, 2019 IEEE 2ndUkraine Conference on Electrical and Computer Engineering (UKRCON),(Lviv, Ukraine, 2019), p. 726; https://doi.org/10.1109/UKRCON.2019.8879928.
23. A. Mang, K. Reimann, and St. Rubenacke, Solid State Commun., 94: 251(1995); https://doi.org/10.1016/0038-1098(95)00054-2.
24. C. G. Broyden, IMA Journal of Applied Mathematics, 6, Iss. 3: 222 (Sep-tember 1970); https://doi.org/10.1093/imamat/6.3.222.
25. R. Fletcher, Comput. J., 13: 317 (1970); https://doi.org/10.1093/comjnl/13.3.317.
26. D. Goldfarb, Math. Comput., 24: 23 (1970); https://doi.org/10.1090/S0025-5718-1970-0258249-6.
27. D. F. Shanno, Math. Comput., 24: 647 (1970); https://doi.org/10.1090/S0025-5718-1970-0274029-X.
28. V. N. Tuoc, T. D. Huan, N. V. Minh, and N. T. Thao, J. Phys.: Conf. Ser.,726: 012022 (2016); https://doi.org/10.1088/1742-6596/726/1/012022.
29. U. Seetawan, S. Jugsujinda, T. Seetawan, A. Ratchasin, C. Euvananont,C. Junin, C. Thanachayanont, and P. Chainaronk, Mater. Sci. Appl., 2: 1302(2011); https://doi.org/10.4236/msa.2011.29176.
30. S. D. Birajdar, P. P. Khirade, V. Bhagwat, A. V. Humbe, K. Jadhav, J. All.Comp., 683: 513 (2016); https://doi.org/10.1016/j.jallcom.2016.05.043.
31. W. Go?pel, J. Pollmann, I. Ivanov, and B. Reihl, Phys. Rev. B, 26: 3144(1982); https://doi.org/10.1103/PhysRevB.26.3144.
32. X. Ma, Y. Wu, Y. Lv, and Y. Zhu, J. Phys. Chem. C, 117: 26029 (2013); https://doi.org/10.1021/jp407281x.
33. H. Dixit, R. Saniz, D. Lamoen, and B. Partoens, J. Phys.: Condens. Matter,22: 125505 (2010); https://doi.org/10.1088/0953-8984/22/12/125505.
34. J. A. Sans, A. Segura, F. J. Manjon, B. Mari, A. Munoz, and M. J. Herrera-Cabrera, Microelectron. J., 36: 928 (2005); https://doi.org/10.1016/j.mejo.2005.05.010.
35. S. J. Chen, Y. C. Liu, C. L. Shao, C. S. Xu, Y. X. Liu, L. Wang, B. B. Liu,and G. T. Zou, J. Appl. Phys., 98: 106106 (2005); https://doi.org/10.1063/1.2177928.
36. R. A. Powell, W. E. Spicer, and J. C. McMenamin, Phys. Rev. Lett., 27: 97(1971); https://doi.org/10.1103/PhysRevLett.27.97.
37. C. J. Vesely, R. L. Hengehold, and D. W. Langer, Phys. Rev. B, 5: 2296(1972); https://doi.org/10.1103/PhysRevB.5.2296.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement