Issues

 / 

2020

 / 

vol. 18 / 

Issue 3

 



Download the full version of the article (in PDF format)

O. V. Khomenko, I. V. Berezovska, M. I. Poletaev, M. E. Khlebnikova, N. P. Efryushina, V. P. Dotsenko
«Influence of Structural Disorder on the Luminescence Properties of Nanosize Eu\(^{2+}\)/3+-Doped Al\(_2\)O\(_3\)»
707–716 (2020)

PACS numbers: 61.05.cp, 68.37.Lp, 78.55.Hx, 78.67.Bf, 79.60.Ht, 81.07.Bc, 81.40.Tv

It is shown the possibility of preparation of nanosize (10–70 nm) Eu\(^{2+}\)-doped Al\(_2\)O\(_3\) by gas-disperse synthesis. By means of luminescent spectroscopy, it is found that some part of Eu ions is stabilized in the +2 oxidation state in the synthesis products and emits in the 360–550 nm range with a maximum at \(\cong\)400 nm. Decay kinetics of this luminescence is characterized by a time constant of \(\tau\cong\)405 ns, which is close to the typical values for 5d→4f transitions of Eu\(^{2+}\) ions in inorganic compounds.

Keywords: nanoparticles, Al\(_2\)O\(_3\), luminescence properties, Eu, defects

https://doi.org/10.15407/nnn.18.03.707
References
1. N. Kawano, T. Kato, G. Okada, N. Kawaguchi, and T. Yanagida, OpticalMaterials, 88: 67 (2019); http://dx.doi.org/10.1016/j.optmat.2018.11.002.
2. I. Levin and D. Brandon, J. Am. Ceram. Soc., 81: 1995 (1998); http://dx.doi.org/10.1111/j.1151-2916.1998.tb02581.x.
3. A. Pillonet, A. Pereira, O. Marty, and C. Champeaux, J. Phys. D: Appl. Phys.,44: 375402 (2011); http://dx.doi.org/10.1088/0022-3727/44/37/375402.
4. K. Smits, D. Millers, A. Zolotarjovs, R. Drunka, and M. Vanks, Applied SurfaceScience, 337: 166 (2015); http://dx.doi.org/10.1016/j.apsusc.2015.02.085.
5. S. Stojadinovic and R. Vasilic, J. Lumin., 199: 240 (2018); http://dx.doi.org/10.1016/j.jlumin.2018.03.062.
6. Y. Yang, B. Wang, A. Cormack, E. Zych, H. J. Seo, and Y. Wu, Optical Materi-als Express, 6: 2404 (2016); http://dx.doi.org/10.1364/OME.6.002404.
7. N. Rakov and G. S. Maciel, J. Lumin., 127: 703 (2007); http://dx.doi.org/10.1016/j.jlumin.2007.04.001.
8. A. N. Zolotko, N. I. Poletaev, and Ya. I. Vovchuk, Comb. Expl. Shock Waves,52: 252 (2015); http://dx.doi.org/10.1134/S0010508215020094.
9. V. P. Dotsenko, I. V. Berezovskaya, E. V. Zubar, N. P. Efryushina,N. I. Poletaev, Yu. A. Doroshenko, G. B. Stryganyuk, and A. S. Voloshinovskii,J. Alloys. Comp., 550: 159 (2013); http://dx.doi.org/10.1016/j.jallcom.2012.09.053.
10. I. V. Berezovskaya, N. I. Poletaev, M. E. Khlebnikova et al., Methods Appl. Flu-oresc., 4: 034011 (2016); http://dx.doi.org/10.1088/2050-6120/4/3/034011.
11. Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, Comb. Flame, 156: 5 (2009); http://dx.doi.org/10.1016/j.combustflame.2008.07.018.
12. N. I. Poletaev and A. V. Florko, Comb. Expl. Shock Waves, 43: 414 (2007); http://dx.doi.org/10.1007/s10573-007-0056-8.
13. S. H. M. Poort, A. Meyerink, and G. Blasse, J. Phys. Chem. Solids, 58: 1451(1997); http://dx.doi.org/10.1016/S0022-3697(97)00010-3.
14. M. A. F. Monteiro, H. F. Brito, M. C. F. C. M. Felinto, G. E. S. Brito,E. E. S. Teotonio, F. M. Vichi, and R. Stefani, Micropor. Mesopor. Mater., 108:237 (2008); http://dx.doi.org/10.1016/j.micromeso.2007.03.045.
15. O. Ozuna and G. A. Hirata, Appl. Phys. Lett., 84: 1296 (2004); http://dx.doi.org/10.1063/1.1650908.
16. A. A. Kaplyanskii, A. B. Kulinkin, A. B. Kutsenko, S. P. Feofilov,R. I. Zakharchenya, and T. N. Vasilevskaya, Phys. Solid State, 40: 1310 (1998); http://dx.doi.org/10.1134/1.1130551.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement