vol. 18 / 

Issue 3


Download the full version of the article (in PDF format)

M. Samsonenko, S. Khalameida, V. Sydorchuk, A. Lakhnik, L. Kotynska
«Structure and Photocatalytic Properties of SnO\(_2\) Doped with Titanium»
697–706 (2020)

PACS numbers: 61.05.Lp, 68.43.Mn, 68.43.Nr, 78.40.-q, 78.67.Bf, 81.16.Hc, 82.50.Hp

The analysis of the changes in structural, electronic, and photocatalytic properties of tin dioxide doped with titanium oxy-hydroxide TiO(OH)\(_2\) by ultrasonic treatment of wet gel is carried out. The doped samples are characterized using XRD with a full profile analysis of the diffraction patterns, N\(_2\) adsorption–desorption and UV–Vis spectroscopy. The absence of TiO\(_2\)-phase reflections after calcining at 300–550\(^{\circ}\)C and the changes in the lattice parameters a and c for the doped samples compared to the pure SnO\(_2\) indicate the possible formation of solid solution. As a result of doping, more open meso-macroporous structure accessible for dyes molecules (Rhodamine B and Safranin T) is formed. Narrowing the band gap E\(_g\) and an increase in the absorption of visible light up to 10% at a wavelength of 550 nm are also observed. The doped sample, that is a solid solution based on SnO\(_2\), has the highest photocatalytic activity in process of degradation of organic pollutants under visible irradiation.

Keywords: SnO\(_2\), titanium, ultrasonic doping, solid solution, meso-macroporous structure, visible irradiation
1. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahneman, Chem. Rev.,95: 69 (1995).
2. J. N. Lalena and D. A. Cleary, Principles of Inorganic Materials Design(New Jersey: John Wiley and Sons: 2010).
3. R. D. Shannon, Acta Cryst. A, 32: 751 (1976).
4. W. B. Jensen, J. Chem. Educ., 73, No. 1: 11 (1996).
5. J. Lin, J. C. Yu, D. Lo, and S. K. Lam, J. Catal., 183: 368 (1999).
6. K. Zakrzewska and M. Radecka, Procedia Engineering, 47: 1077 (2012);
7. K. Sakthiraj, and K. B. Kumar, Int. J. ChemTech Res., 6, No. 3: 2216 (2014).
8. S. M. Hassan, A. I. Ahmed, and M. A. Mannaa, Journal of Science: Ad-vanced Materials and Devices, 4, No. 3: 400 (2019);
9. X. M. Liu, S. L. Wu, P. K. Chu, J. Zheng, and S. L. Li, Materials Scienceand Engineering: A, 426, Nos. 1–2: 274 (2006);
10. L. Ran, D. Zhao, X. Gao, and L. Yin, Cryst. Eng. Comm., 17, No. 22: 4225(2015);
11. Y. Cao, W. Yang, W. Zhang, G. Liu, and P. Yue, New Journal of Chemistry,28, No. 2: 218 (2004);
12. S. V. Khalameida, M. N. Samsonenko, V. V. Sydorchuk, V. L. Starchevskyy,O. I. Zakutevskyy, and O. Yu. Khyzhun, Theor. Exp. Chem., 53, No. 1: 40(2017);
13. L. Lutterotti, S. Matthies, and H.-R. Wenk, Proc. of the 12th InternationalConf. on Textures of Materials (ICOTOM-12) (August 9–13, 1999) (Ottawa:NRC Research Press: 1999), vol. 1, p. 1599.
14. L. Lutterotti, S. Matthies, and H.-R. Wenk, IUCr: Newsletter of the CPD,21: 14 (1999).
15. M. Samsonenko, O. Zakutevskyy, S. Khalameida, B. Charmas, andJ. Skubiszewska-Zieba, Adsorption, 25, No. 3: 451 (2019);
16. Landolt-Bornstein. Numerical Data and Functional Relationships in Science706 M. SAMSONENKO, S. KHALAMEIDA, V. SYDORCHUK et al.and Technology (Ed. O. Madelung) (Berlin: Springer: 1983), vol. 17, p. 133.
17. M. Irani, K. A. M. Gasem, B. Dutcher, and M. Fan, Fuel, 183: 601 (2016);
18. S. Khalameida, M. Samsonenko, J. Skubiszewska-Zieba, and O. Zakutevskyy,Adsorption Science and Technology, 35, Nos. 9–10: 853 (2017);
19. M. Crisan, D. Mardare, A. Ianculescu, N. Dragan, I. Nitoi, D. Crisan, andB. Vasile, Applied Surface Science, 455: 201 (2018);
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement