Issues

 / 

2020

 / 

vol. 18 / 

Issue 3

 



Download the full version of the article (in PDF format)

M. V. Shapovalova, T. A. Khalyavka, N. D. Shcherban, O. Y. Khyzhun, V. V. Permyakov, S. N. Shcherbakov
«The Influence of Sulphur Dopants on Optical, Textural, Structural, and Photocatalytic Properties of Titanium Dioxide»
681–695 (2020)

PACS numbers: 68.37.Lp, 68.43.Nr, 78.30.-j, 78.40.-q, 78.67.Rb, 82.50.Hp, 82.80.Pv

Nanoscale composite materials based on titanium dioxide with different content of sulphur are obtained by the sol–gel method. The samples were analysed using SEM–EDS microscopy, transmission electron microscopy (TEM), x-ray diffraction analysis (XRD), x-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflection spectra (DRUV), room temperature FT–IR spectroscopy, and BET method. X-ray powder diffraction reveals the phase of anatase in all composites and appearance of the rutile phase for the samples with sulphur. As established, doping with sulphur leads to a decrease in the crystallite sizes from 14.6 to 9.9 nm. Analysis of nitrogen sorption–desorption isotherms for the synthesized samples shows the presence of a hysteresis loop, which is the evidence for mesoporous structure of the powders. The composite samples manifest a bathochromic shift as compared with the absorption band of pure TiO\(_2\). As found, the modification of titanium dioxide with sulphur leads to band gap narrowing of the composites. Nanocomposite samples show photocatalytic activity in the destruction of safranin T under visible irradiation. It can be attributed to the appearance of absorption in the visible region, narrowing of band gap, participation of sulphur in the inhibition of electron–hole recombination, prolongation of charges lifetime, increasing efficiency of interfacial charge separation, and change in textural characteristics.

Keywords: titanium dioxide, sulphur, safranin T, photocatalysis, visible light

https://doi.org/10.15407/nnn.18.03.681
References
1. M. Ismael, New J. Chem., 43: 9596 (2019); https://doi.org/10.1039/c9nj02226k.
2. G. Di Liberto, S. Tosoni, and G. Pacchioni, Phys. Chem. Chem. Phys., 21:694 M. V. SHAPOVALOVA, T. A. KHALYAVKA, N. D. SHCHERBAN et al.21497 (2019); https://doi.org/10.1039/c9cp03930a.
3. O. Linnik, E. Manuilov, S. Snegir, N. Smirnova, and A. Eremenko, J. Adv.Oxid. Technol., 12: 265 (2009); https://doi.org/10.1515/jaots-2009-0218.
4. V. Kumaravel, S. Rhatigan, S. Mathew, J. Bartlett, M. Nolan, S.J. Hinder,P. K. Sharma, A. Singh, J. A. Byrne, J. Harrison, and S. C. Pillai, J. Phys.Chem. C, 123: 21083 (2019); https://doi.org/10.1021/acs.jpcc.9b06811.
5. N. P. Smirnova, E. V. Manuilov, O. M. Korduban, Y. I. Gnatyuk, V. O. Kandyba,A. M. Eremenko, P. P. Gorbyk, and A. P. Shpak, Nanomater. Supramol. Struct.Physics, Chem. Appl. (2009); https://doi.org/10.1007/978-90-481-2309-4.
6. T. A. Khalyavka, N. D. Shcherban, V. V. Shymanovska, E. V. Manuilov,V. V. Permyakov, and S. N. Shcherbakov, Res. Chem. Intermed., 45: 4029(2019); https://doi.org/10.1007/s11164-019-03888-z.
7. M. Barberio, A. Imbrogno, D. Remo Grosso, A. Bonanno, and Fang Xu,J. Chem. Chem. Eng., 9: 245 (2015); https://doi.org/10.17265/1934-7375/2015.04.002.
8. N. Chorna, N. Smirnova, V. Vorobets, G. Kolbasov, and O. Linnik, Appl.Surf. Sci., 473: 343–351 (2019); https://doi.org/10.1016/j.apsusc.2018.12.154.
9. S. Wang, L. Zhao, L. Bai, J. Yan, Q. Jiang, and J. Lian, J. Mater. Chem. A,2: 7439 (2014); https://doi.org/10.1039/c4ta00354c.
10. M. V. Bondarenko, T. A. Khalyavka, A. K. Melnyk, S. V. Camyshan, andY. V. Panasuk, J. Nano- Electron. Phys., 10: 06039-1 (2018); https://doi.org/10.21272/jnep.10(6);06039.
11. M. V. Bondarenko, T. A. Khalyavka, N. D. Shcherban, and N. N. Tsyba,Nanosistemi, Nanomateriali, Nanotehnologii, 15: 99 (2017); https://doi.org/10.15407/nnn.15.01.0099.
12. S. Rajagopal, D. Nataraj, O.Y. Khyzhun, Y. Djaoued, J. Robichaud,K. Senthil, and D. Mangalaraj, Cryst. Eng. Comm., 13: 2358 (2011); https://doi.org/10.1039/c0ce00303d.
13. S. Hufner, Photoelectron Spectroscopy: Principles and Applications (Berlin–Heidelberg: Springer-Verlag: 2003).
14. V. V. Atuchin, O. Y. Khyzhun, O. D. Chimitova, M. S. Molokeev,T. A. Gavrilova, B. G. Bazarov, and J. G. Bazarova, J. Phys. Chem. Solids,77: 101 (2015); https://doi.org/10.1016/j.jpcs.2014.09.012.
15. E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73: 373(1951); https://doi.org/10.1021/ja01145a126.
16. E. M. Rockafellow, L. K. Stewart, and W. S. Jenks, Appl. Catal. B Environ.,91: 554 (2009); https://doi.org/10.1016/j.apcatb.2009.06.027.
17. L. Gomathi Devi and R. Kavitha, Mater. Chem. Phys., 143: 1300 (2014); http://dx.doi.org/10.1016/j.matchemphys.2013.11.038.
18. S. Lowell and J. Shields, Powder Surface Area and Porosity (London: Chap-man & Hall: 1991).
19. K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, andT. Siemieniewska, Pur Appl. Chem., 57: 420 (1995).
20. G. Colon, M. Maicu, M. C. Hidalgo, and J. A. Navio, Appl. Catal. B Environ., 67:41 (2006); https://doi.org/10.1016/j.apcatb.2006.03.019.
21. J. C. Riviere and M. Sverre, Handbook of Surface and Interface AnalysisMethods for Problem-Solving (Boca Raton–London–New York: CRC Press:2009).
22. D. Briggs and P. M. Seach, Practical Surface Analysis: Auger and X-Ray THE INFLUENCE OF S DOPANTS ON PROPERTIES OF TiO 2 695Photoelectron Spectroscopy (Chichester: John Willey & Sons Ltd.: 1990).
23. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg,Handbook of X-Ray Photoelectron Spectroscopy (Eden Prairie, Minnesota, USA:Perkin-Elmer Corp., Physical Electronics Division: 1979).
24. A. Anson-Casaos, I. Tacchini, A. Unzue, and M. T. Martinez, Appl. Surf.Sci., 270: 675 (2013); https://doi.org/10.1016/j.apsusc.2013.01.120.
25. Z. W. Qu and G. J. Kroes, Phys. Chem. B, 110: 8998 (2006); https://doi.org/10.1021/jp056607p.
26. A. Davydov, IK-Spektroskopiya v Khimii Poverkhnosti Okislov (Novosibirsk:Nauka: 1984) (in Russian).
27. D. I. Sayago, P. Serrano, O. Bohme, A. Goldoni, G. Paolucci, E. Roman, andJ. A. Martin-Gago, Surf. Sci., 482: 9 (2001); doi: 10.1016/S0039-6028(00)00998-5.
28. S. T. Hussain, K. Khan, and R. Hussain, J. Nat. Gas Chem., 18: 383 (2009); https://doi.org/10.1016/S1003-9953(08)60133-4.
29. Z. Ding, G. Q. Lu, and P. F. Greenfield, J. Phys. Chem. B, 104: 4799 (2000); https://doi.org/10.1021/jp993819b.
30. E. T. Bender, P. Katta, A. Lotus, S. J. Park, G. G. Chase, and R. D. Ramsier,Chem. Phys. Lett., 423: 302 (2006); https://doi.org/10.1016/j.cplett.2006.03.092.
31. L. E. Davies, N. A. Bonini, S. Locatelli, and E. E. Gonzo, Lat. Amer. Appl.Res., 35: 23 (2005).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement