Issues

 / 

2020

 / 

vol. 18 / 

Issue 3

 



Download the full version of the article (in PDF format)

V. M. Ogenko, L. B. Kharkova, O. G. Yanko, L. S. Lysiuk, A. A. Ishchenko, A. V. Kulinich
«Synthesis and Spectral Properties of Highly Fluorescent Nitrogen-Containing Graphene-Type Structures»
639–647 (2020)

PACS numbers: 33.20.-t, 78.30.Na, 78.40.Ri, 78.60.Lc, 78.67.Hc, 81.05.U-, 81.07.Nb

A preparative autoclave method for the synthesis of nitrogen-containing carbon quantum dots (CQDs) in the form of stable aqueous solutions (suspensions) is worked over. Further modification of them is carried out via treatment with ethylene diamine and hydrogen peroxide in microwave oven that has allowed varying their spectral-fluorescent properties to some extent. Structure of the synthesized CQDs is studied using x-ray fluorescence and IR spectroscopies. The absorption and fluorescence spectra of the obtained nanostructures are investigated, revealing that they are characterized by fluorescence high quantum yields and large Stokes shifts, while their fluorescence spectra depend on the excitation wavelength. The latter fact is indicative of the complex-mix nature of the synthesized CQDs. The possibility of noncovalent interaction of the CQDs with water-soluble polymethine dyes of different ionicity is investigated.

Keywords: graphene-type structures, modification, dispersions, absorption spectra, fluorescence spectra

https://doi.org/10.15407/nnn.18.03.639
References
1. S. Y. Lim, W. Shen, and Z. Gao, Chem. Soc. Rev., 44, No. 1: 362 (2015); https://doi.org/10.1039/C4CS00269E.
2. K. Hola, A. B. Bourlinos, O. Kozak et al., Carbon, 70: 279 (2014); https://doi.org/10.1016/j.carbon.2014.01.008.
3. Y. Wang, Y. Shao, D. W. Matson et al., ACS Nano, 4, No. 4: 1790 (2010); https://doi.org/10.1021/nn100315s.
4. S. Zhu, Q. Meng, L. Wang et al., Angew. Chem. Int. Ed., 52, No. 14: 3953(2013); https://doi.org/10.1002/anie.201300519.
5. L. B. Elbert, Ann. Rev. Mater. Sci., 6: 181 (1976); https://doi.org/10.1146/annurev.ms.06.080176.001145.
6. F. A. Permatasari, A. H. Aimon, F. Iskandar et al., Sci. Rep., 6: 21042(2016); https://doi.org/10.1038/srep21042.
7. K. Hola, M. Sudolska, S. Kalytchuk et al., ACS Nano, 11, No. 12: 12402(2017); https://doi.org/10.1021/acsnano.7b06399.
8. J. Schneider, C. J. Reckmeier, Y. Xiong et al., J. Phys. Chem., 121, No. 3:2014 (2017); https://doi.org/10.1021/acs.jpcc.6b12519.
9. M. G. Chernysheva, A. G. Popov, V. N. Tashlitsky, and G. A. Badun, Col-loids Surf. A, 565: 25 (2019); https://doi.org/10.1016/j.colsurfa.2018.12.057.
10. C. Villegas, E. Krokos, P.-A. Bouit et al., Energy Environ. Sci., 4: 679(2011); https://doi.org/10.1039/C0EE00497A.
11. A. A. Ishchenko, N. O. Mchedlov-Petrossyan, N. N. Kriklya et al.,ChemPhysChem, 20: 1028 (2019); https://doi.org/10.1002/cphc.201900083.
12. N. O. Derevianko, O. O. Ishchenko, A. V. Kulinich et al., Nanosistemi,Nanomateriali, Nanotehnologii, 15, No. 2: 337 (2017); Н. О. Дерев’янко,О. О. Іщенко, А. В. Кулініч та ін., Наносистеми, наноматеріали, нано-технології, 15, вип. 2: 337 (2017); https://doi.org/10.15407/nnn.15.02.0337.
13. A. A. Ishchenko, Russ. Chem. Rev., 60, No. 8: 865 (1991); https://doi.org/10.1070/RC1991v060n08ABEH001116.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement