vol. 18 / 

Issue 3


Download the full version of the article (in PDF format)

Jafer Fahdel Odah, Fadhil K. Farhan, Ahmed Abed Anber
«Synthesis and Characterization of the System (EPn-MgO) Used in Thermal Ablation Applications»
619–629 (2020)

PACS numbers: 61.05.cp, 65.80.-g, 66.30.Xj, 66.70.Lm, 68.37.Hk, 81.07.Wx, 81.15.Fg

In the current research, magnesium oxide nanopowder (n-MgO) was prepared using dry chemistry method. The structural characterization of the prepared n-MgO was carried out using x-ray diffraction (XRD) technique and scanning electron microscope (SEM). The powder was mixed with epoxy resin at ratios of 2%, 4%, 6% and 8%. The effect of reinforcement of n-MgO on thermal properties of epoxy-resin-based composites such as thermal rate and insulation index was studied at three different temperatures: 380, 680 and > 1800 K. Thermal testing that was carried out included thermal conductivity measurement using Mathis TCi and erosion rate test using oxy-acetylene flame technique. The results showed that increasing the content of n-MgO can significantly enhance the thermal properties such thermal conductivity, thermal diffusion, specific heat capacity as well as thermal resistance.

Keywords: epoxy resin, magnesium oxide, thermal ablation, thermal characterization
1. Epoxy Resin Chemistry and Technique (Eds. C. A. May and G. Y. Tanaka) (NewYork: Marcel Dekker: 1988).
2. Y. I. Dimitrienko, Int. J. Eng. Sci., 35: 15 (1997).
3. M. K. Seo, J. H. Byun, and S. J. Park, Studies on Morphologies and MechanicalProperties of Multi-Walled Carbon Nanotubes/Epoxy Matrix Composites(Incheon, Korea: Department of Chemistry, Inha University: 2010).
4. W. Bolton, Engineering Materials Technology (Heinemann: 1998).Fig. 11. Thermal resistance as a function of n-MgO wt.%. SYNTHESIS AND CHARACTERIZATION OF THE SYSTEM (EPn-MgO) 629
5. F. C. Ng, A. Abas, Z. L. Gan, M. Z. Abdullah, F. C. Ani, and M. Y. T. Ali,Microelectron. Reliab., 72: 45 (2017).
6. U. S. Jeong, Y. J. Lee, D. G. Shin, H. M. Lim, S. Y. Mun, W. T. Kwon,S. R. Kim, Y. H. Kim, K. B. Shim, Trans. Electr. Electron. Mater., 16: 351(2015).
7. Y. C. Zhou, H. Wang, L. Wang, K. Yu, Z. D. Lin, L. He, and Y. Y. Bai, Mater.Sci. Eng. B, 177: 892 (2012).
8. M. I. Kim, S. Kim, T. Kim, D. K. Lee, B. Seo, and C.-S. Lim, Coatings, 7: 231(2017).
9. X. Zhang, . Wen, and Y. Wu, Polymers, 9: 430 (2017).
10. . Wang, J. Liu, Y. Cheng et al., Nanomaterials, 8: 242 (2018).
11. J. K. Salem, I. M. El-Nahhal, T. M. Hammad, and R. Hempelmann, Chem. Phys.Lett., 636: 26 (2015).
12. S. K. Moorthy, C. H. Ashok, K. Venkateswara Rao, and C. Viswanathan, Mater.Today Proc., 2: 4360 (2015).
13. D. Kumar, L. S. Reddy Yadav, K. Lingaraju et al., AIP Conf. Proc., 1665:050145 (2015).
14. P. Sugirtha, R. Divya, R. Yedhukrishnan et al., Asian J. Chem., 27, No. 7: 2513(2015).
15. A. V. Awwad and A. L. Ahmad, Arab. J. Phys. Chem., 1, No. 2: 66 (2014).
16. J. Suresh, R. Yuvakkumar, M. Sundrarajan, and S. I. Hong, Adv. Mater. Res.,952: 141 (2014).
17. Z. Eslami, F. Yazdani, and M. A. Mirzapour, Composites Part A: Applied Sci-ence and Manufacturing, 72: 22 (2015);
18. R. Srinivasan and V. Banton, App. Phys. Lett., 41: 576 (1982).
19. F. K. Farhan, B. J. Obeid, and M. O. Kadhim, Journ. of Adv. Research in Dy-namical & Control Systems, 10, Iss. 04 (2018).
20. H. Xu and D. Pasini, Sci. Rep., 6: 34924 (2016).
21. R. Agarwal, N. S. Saxena, K. B. Sharma, S. Thomas, and M. S. Sreekala,J. Appl. Polym. Sci., 89: 1708 (2003).
22. F. K. Farhan, Journal of Engineering, 24, No. 8: 1 (2018).
23. J. K. Oleiwi, S. I. Salih, and H. S. Fadhil, International Journal of Mechanicaland Production, 8, Iss. 3: 1105 (2018).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement