vol. 18 / 

Issue 3


Download the full version of the article (in PDF format)

A. I. Schurenko, V. I. Styopkin, D. O. Grynko, A. M. Dobrovolskiy
«Self-Organized Anatase-Nanotubesĺ Array»
529–539 (2020)

PACS numbers: 61.46.Np, 68.37.Hk, 73.63.Fg, 82.45.Fk, 82.45.Yz, 82.47.Rs, 82.80.Fk

The possibility of creating highly-ordered arrays of anatase nanotubes by means of anodizing and subsequent annealing under normal conditions is demonstrated. Annealing eliminates residues of organic impurities in the bulk of the structure after anodizing and subsequent purification too. The used electrolyte allows growing nanotubes with controlled geometric parameters within their internal diameter from 10 to 100 nm for exposure times from 10 to 40 min, and with lengths from 5 to 30 \(\mu\)m for times from 20 min to 9 hours. The possibility of using such structures as an electrode of electrochemical sensor systems of the DNA is shown.

Keywords: nanotubes array, anatase, anodization, electrochemical sensor system, DNA
1. X. Wang, Z. Li, J. Shi, and Y. Yu, Chemical Reviews, 114, No. 19: 9346(2014);
2. Y. Ye, Y. Feng, H. Bruning, D. Yntema, and H. H. M. Rijnaarts, AppliedCatalysis B: Environmental, 220: 171 (2018); SELF-ORGANIZED ANATASE-NANOTUBESĺ ARRAY 539
3. N. Liu, I. Paramasivam, M. Yang, and P. Schmuki, J. Solid State Electr.,16: 3499 (2012).
4. H. Song, K. Cheng, and H. Guo, Catalysis Communication, 97: 23 (2017).
5. Q. Zhou, Z. Fang, J. Li, and M. Wang, Microporous and Mesoporous Materials,202: 22 (2015).
6. S. Hejazi, N. T. Nguyen, A. Mazare, and P. Schmuki, Catal. Today, 281,Part 1: 189 (2017).
7. M. Ge, Q. Li, C. Cao, Adv. Sci., 4: 1600152 (2017);
8. F. Mohammadpour, M. Moradi, and G. Cha, Chemelectrochem, 2: 204 (2015).
9. X. Gao, J. Li, J. Baker, and Y. Hou, Chem. Commun., 50: 6368 (2014).
10. A. Pourandarjani and F. Nasirpouri, Thin Solid Films, 640: 1 (2017).
11. M. Terracciano, V. Galstyan, I. Rea, and M. Casalino, Appl. Surf. Sci., 419:235 (2017).
12. M. Kulkarni, A. Mazare, and E. Gongadze, 26: 062002 (2015).
13. A. Pawlik, M. Jarosz, K. Syrek, and G. D. Sulka, Colloid and Surface B:Biointerfaces, 152: 95 (2017).
14. A. Walcarius, Anal Bioanal Chem., 396: 261 (2010).
15. A. I. Schurenko, V. I. Stiopkin, D. A. Galaktionov, O. V. Danko,P. I. Lytvin, and D. O. Grynko, Nanophysics, Nanophotonics, Surface Studies,and Applications. Vol. 183. Springer Proceedings in Physics (Eds. O. Fesenkoand L. Yatsenko), p. 179 (2016); doi 10.1007/978-3-319-30737-4_15.­­.
16. Yu Fu and Anchun Mo, Nanoscale Research Letters, 13: 187 (2018);doi 10.1186/s11671-018-2597-z.
17. M. Matsishin, A. Rachkov, A. Errachid, S. Dzyadevych, and A. P. Soldatkin,Sensors and Actuators B-Chemical, 222: 1152 (2016).
18. M. J. Matsishin, Iu. V. Ushenin, A. E. Rachkov, and A. P. Solatkin, NanoscaleResearch Letters, 11: 19 (2016); doi 10.1186/s11671-016-1226-y.
19. A. B. Bogoslovska, O. M. Khalimovskyy, and D. O. Grynko, SemiconductorPhysics, Quantum Electronics and Optoelectronics, 22: 479 (2019).
20. A. Bogoslovska, D. Grynko, E. Bortchagovsky, and O. Gudymenko, Semi-conductor Physics, Quantum Electronics and Optoelectronics, 22: 231 (2019).
21. P. S. Smertenko, D. A. Grynko, N. M. Osipyonok, O. P. Dimitriev, andA. A. Pud, Phys. Stat. Solidi A, 210, No. 9: 1851 (2013);doi: 10.1002/pssa.201228805.
22. D. A. Grynko, O. M. Fedoryak, P. S. Smertenko, O. P. Dimitriev,N. A. Ogurtsov, and A. A. Pud, Nanoscale Research Letters, 11, No. 1: 265(2016); doi: 10.1186/s11671-016-1469-7.
23. D. Grynko, A. Rachkov, and A. Soldatkin, Abstracts of NANSYS-2019 Conf.(3ľ5 December 2019, Kyiv, Ukraine) (Kyiv: N.A.S.U.: 2019), p. 200.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement