Issues

 / 

2020

 / 

vol. 18 / 

Issue 2

 



Download the full version of the article (in PDF format)

O. Eu. Sych, A. P. Iatsenko, T. V. Tomila, O. I. Bykov, A. Chodara, R. Mukhovskyi, J. Mizeracki, S. Gierlotka, W. Lojkowski, Y. I. Yevych
«Effect of Chitosan Coating on the Structure and Properties of Highly-Porous Bioceramic Scaffolds for Bone Tissue Engineering»
437–447 (2020)

PACS numbers: 61.05.cp, 68.37.Hk, 81.05.Rm, 81.20.-n, 87.15.La, 87.64.km, 87.85.Lf

Highly-porous bioceramic scaffolds based on biogenic hydroxyapatite with addition of 40 wt.% of glass (wt.%: 45.7 SiO\(_2\), 28.2 B\(_2\)O\(_3\), 26.1 Na\(_2\)O) were prepared by foam replication method at 700\(^{\circ}\)C followed by coating of chitosan dissolved in 1% acetic acid solution and drying at 50\(^{\circ}\)C. Bioceramic samples were studied by XRD, IR spectroscopy and SEM. Phase composition, morphology, skeleton density, porosity, compression strength and in vitro tests were evaluated. The results show that, during sintering, the biogenic hydroxyapatite in bioceramic composition is stable and keeps hydroxyapatite phase without secondary phase formation. Chitosan coating shows twofold increase in the compression strength in comparison with pure bioceramics. Moreover, chitosan coating significantly influences on the structure of highly-porous bioceramic scaffolds and dissolution rate in saline. Thus, balanced porosity and compression strength and dissolution rate make the prepared materials promising for bone marrow stromal cell loading, drug delivery and bone tissue engineering application.

Keywords: hydroxyapatite, chitosan, highly-porous material, foam replication method, biomaterial

https://doi.org/10.15407/nnn.18.02.437

References
1. L. Roseti, V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, and B. Grigolo, Mater. Sci. Eng. C, 78: 1246 (2017). https://doi.org/10.1016/j.msec.2017.05.017
2. L. C. Gerhardt and A. R. Boccaccini, Materials, 3: 3867 (2010). https://doi.org/10.3390/ma3073867
3. A. Yatsenko, O. Sych, and T. Tomila, Proc. Appl. Ceram., 9, No. 2: 99 (2015). https://doi.org/10.2298/PAC1502099I
4. E. E. Sych, A. P. Yatsenko, T. V. Tomila, A. B. Tovstonog, and Ya. I. Yevych, Powder Metall. Met. Ceram., 55: 319 (2016). https://doi.org/10.1007/s11106-016-9808-x
5. O. Sych, A. Iatsenko, H. Tovstonoh, T. Tomila, and Ya. Yevych, Funct. Mater., 24, No. 1: 46 (2017).
6. L. M. Panchenko, O. Ye. Sych, and A. P. Iatsenko, Orthop Traumatol Prosthet., 4: 50 (2014).
7. R. A. A. Muzzare, Carbohydr. Polym., 76: 167 (2009).
8. S. Saravanan, R. S. Leena, and N. Selvamurugan, Int. J. Biol. Macromol., 93: 1354 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.112
9. Y. B. Rubaiya, K. T. S. Sampath, and D. Mukesh, Mater. Sci. Eng. C, 57: 452 (2015).
10. M. A. Nazeer, E. Yilgor, and I. Yilgor, Carbohydr. Polym., 175: 38 (2017). https://doi.org/10.1016/j.carbpol.2017.07.054
11. A. Ressler, J. Rodenas-Rochina, M. Ivankovic, H. Ivankovic, and G. G. Ferrer, Carbohydr. Polym., 197: 469 (2018). https://doi.org/10.1016/j.carbpol.2018.06.029
12. O. Sych, N. Pinchuk, A. Parkhomey, A. Kuda, L. Ivanchenko, V. Skorokhod, O. Vasylkiv, O. Getman, and Y. Sakka, Funct. Mater., 14, No. 4: 430 (2007).
13. O. Sych and N. Pinchuk, Proc. Appl. Ceram., 1, Iss. 1-2: 1 (2007). https://doi.org/10.2298/PAC0702001S
14. F. N. Oktar, Ceram. Int., 33: 1309 (2007). https://doi.org/10.1016/j.ceramint.2006.05.022
15. G. Gergely, F. Weber, I. Lukacs, A. L. Toth, Z. H. Horvath, J. Mihaly, and C. Balazsi, Ceram. Int., 36: 803 (2010). https://doi.org/10.1016/j.ceramint.2009.09.020
16. O. Sych, N. Pinchuk, and L. Ivanchenko, Proc. Appl. Ceram., 3, Iss. 3: 157 (2009). https://doi.org/10.2298/PAC0903157S
17. G. B. Tovstonog, O. E. Sych, and V. V. Skorokhod, Powder Metall. Met. Ceram., 53: 566 (2015). https://doi.org/10.1007/s11106-015-9651-5
18. P. L. Granja, A. I. N. Silva, Joao P. Borges, C. C. Barrias, and I. F. Amaral, Key Eng. Mater., 254-256: 573 (2004). https://doi.org/10.4028/www.scientific.net/KEM.254-256.573
19. A. Yoshida, T. Miyazaki, E. Ishida, and M. Ashizuka, Mater. Trans., 45, No. 4: 994 (2004). https://doi.org/10.2320/matertrans.45.994
20. H. K. Varma, Y. Yokogawa, F. F. Espinosa, Y. Kawamoto, K. Nishizawa, F. Nagata, and T. Kameyama, Biomaterials, 20: 879 (1999).
21. H. H. Abdel-Razik and H. A. Almahy, Int. J. Chem. Sci., 13: 1713 (2015).
22. M. F. Queiroz, K. R. T. Melo, D. A. Sabry, G. L. Sassaki, and H. A. O. Rocha, Mar. Drugs, 13: 141 (2015). https://doi.org/10.3390/md13010141
23. C. Song, H. Yu, M. Zhang, Y. Yang, and G. Zhang, Int. J. Biol. Macromol., 60: 347 (2013). https://doi.org/10.1016/j.ijbiomac.2013.05.039
24. M. A. Ouis, A. M. Abdelghany, and H. A. Elbatal, Process. Appl. Ceram., 6, Iss. 3: 141 (2012). https://doi.org/10.2298/PAC1203141O
25. C. Gautam, A. K. Yadav, and A. K. Singh, Int. Sch. Res. Notices, Ceramics: 1 (2012). https://doi.org/10.5402/2012/428497
26. O. R. Parkhomei, N. D. Pinchuk, O. E. Sych, T. V. Tomila, H. B. Tovstonoh, V. F. Gorban', Y. I. Yevych, and O. A. Kuda, Powder Metall. Met. Ceram., 55: 172 (2016). https://doi.org/10.1007/s11106-016-9792-1
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement