Issues

 / 

2020

 / 

vol. 18 / 

Issue 2

 



Download the full version of the article (in PDF format)

S. E. Litvin, Yu. A. Kurapov, O. M. Vazhnycha, Ya. A. Stel’makh, S. M. Romanenko, O. I. Oranska
«Electron-Beam Physical Deposition within the Vacuum of Biologically Pure (Ligandless) Iron Oxide Nanoparticles»
373–392 (2020)

PACS numbers: 61.05.cp, 68.37.Hk, 68.37.Lp, 68.43.-h, 78.67.Bf, 81.15.Jj, 81.70.Pg

The results of study of the structure of porous condensates of the composition iron–sodium chloride, chemical and phase compositions, and size of nanoparticles obtained by physical synthesis from the vapour phase using the electron-beam physical vapour deposition method are considered. With a rapid recovery from vacuum, iron nanoparticles are oxidized in the air to magnetite. In the initial state, they have significant sorption capacity with respect to oxygen and moisture. Physically adsorbed oxygen participates in the oxidation of Fe\(_3\)O\(_4\) to Fe\(_2\)O\(_3\). An increase in condensation temperature is accompanied by the increase in size of nanoparticles; as a result of that, the total surface area of nanoparticles is significantly reduced, and consequently, their sorption capacity is decreased. Even without stabilization, such nanoparticles studied as ex tempore prepared aqueous dispersion have characteristic antianemic effect on the laboratory animals that can be used in medicine.

Keywords: EB-PVD, iron oxide nanoparticles, sorption, phase composition, colloid systems, antianemic effect

https://doi.org/10.15407/nnn.18.02.373

References
1. M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin, and V. G. Harris, International Materials Reviews, 49: 125 (2004); https://doi.org/10.1179/095066004225021882.
2. J. A. Schwarz, C. I. Contescu, and K. Putyera, Dekker Encyclopedia of Nanoscience and Nanotechnology (Ed. S. E. Lyshevski) (CRC Press: 2014), vol. 3; https://www.amazon.com/Dekker-Encyclopedia-NanoscienceNanotechnology-3/dp/0824750497.
3. R. A. Revia and M. Zhang, MaterialsToday, 19, No. 3: 157 (2016); https://dx.doi.org/10.1016%2Fj.mattod.2015.08.022.
4. V. I. Nikolaev, A. M. Shipilin and I. N. Zakharova, Physics of the Solid State, 43: 1515 (2001); https://doi.org/10.1134/1.1395093.
5. C. V. Thach, N. H. Hai, and N. Chau, Journal of the Korean Phys. Soc., 52: 1332 (2008); https://doi.org/10.3938/jkps.52.1332.
6. A. P. Shpak and P. P. Gorbyk, Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications (Dordrecht–London–New York: Springer: 2009); http://www.springer.com/gp/book/9789048123087.
7. L. Kopanja, S. Kralj, D. Zunic, B. Loncar and M. Tadic, Ceramics International, 42: 10976 (2016); https://doi.org/10.1016/j.ceramint.2016.03.235.
8. M. Tadic, S. Kralj, M. Jagodic, D. Hanzel, and D. Makovec, Applied Surface Science, 322: 255 (2014); https://doi.org/10.1016/j.apsusc.2014.09.181.
9. W. C. Elmore, Phys. Rev., 54: 309 (1938); https://doi.org/10.1103/PhysRev.54.309.
10. K. Klabunde and G. B. Sergeev, Nanochemistry (Elsevier: 2013), p. 372; https://www.elsevier.com/books/nanochemistry/klabunde/978-0-444-59397- 9.
11. B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, Chem. Rev., 104: 3893 (2004); https://doi.org/10.1021/cr030027b.
12. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev., 105, No. 4: 1025 (2005); https://doi.org/10.1021/cr030063a.
13. L. Kopanja, I. Milosevic, M. Panjan, V. Damnjanovic, and M. Tadic, Applied Surface Science, 362, 380 (2016); https://doi.org/10.1016/j.apsusc.2015.11.238.
14. M. Tadic, V. Kusigerski, D. Markovic, M. Panjan, I. Milosevic, and V. Spasojevic, Journal of Alloys and Compounds, 525: 28 (2012); https://doi.org/10.1016/j.jallcom.2012.02.056.
15. I. M. L. Billas, A. Chatelain, and W. A. de Heer, J. Magn. Magn. Mater., 168, Nos. 1–2: 64 (1997); https://doi.org/10.1016/S0304-8853(96)00694-4.
16. I. M. L. Billas, A. Chatelain, and W. A. de Heer, Surface Review and Letters, 3, No. 1: 429 (1996); https://doi.org/10.1142/S0218625X96000772.
17. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, Russ. Chem. Rev., 74, No. 6: 489 (2005); https://doi.org/10.1070/RC2005v074n06ABEH000897.
18. A. G. Roca, R. Costo, A. F. Rebolledo, S. Veintemillas-Verdauguer, P. Tartaj, T. Gonzales-Carrenno, M. P. Morales, and C. J. Serna, Journal of Physics D: Applied Physics, 42, No. 22: 224002 (2009); http://dx.doi.org/10.1088/0022-3727/42/22/224002.
19. B. A. Movchan, Yu. A. Kurapov, G. G. Didikin, S. G. Litvin, S. M. Romanenko, Powder Metallurgy and Metal Ceramics, 50, Nos. 3–4: 167 (2011); http://dx.doi.org/10.1007/s11106-011-9314-0.
20. Yu. A. Kurapov, L. A. Krushinskaya, S. E. Litvin, S. M. Romanenko, Ya. A. Stelmakh, and V. Ya. Markiev, Powder Metallurgy and Metal Ceramics, 53, Nos. 3–4: 199 (2014); http://dx.doi.org/10.1007/s11106-014-9604-4.
21. Yu. A. Kurapov, S. E. Litvin, and S. M. Romanenko, Nanostructured Materials Science, 1: 55 (2013); http://www.materials.kiev.ua/science/edition_view.jsp?id=2.
22. Yu. A. Kurapov, S. E. Litvin, G. G. Didikin, and S. M. Romanenko, Advances in Electrometallurgy, 9, No. 2: 82 (2011); https://patonpublishinghouse.com/eng/journals/sem/2011/02/05.
23. Yu. A. Kurapov, S. E. Litvin, S. M. Romanenko, G. G. Didikin, and E. I. Oranskaya, Materials Research Express, 4, No. 3: 035031 (2017); https://doi.org/10.1088/2053-1591/4/3/035031.
24. I. S. Kovinsky, L. A. Krushinskaya, and B. A. Movchan, Advances in Electrometallurgy, 9, No. 1: 42 (2011); https://patonpublishinghouse.com/eng/journals/sem/2011/01/08.
25. I. S. Chekman, Z. R. Ul’berh, V. O. Malanchuk, N. O. Horchakova, and I. A. Zupanets’, Nanoscience, Nanobiology, Nanofarmation (Kyiv: Polihraf Plyus: 2012), p. 328; https://www.twirpx.com/file/1157774/.
26. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller, Chem. Rev., 108, No. 6: 2064 (2008); http://dx.doi.org/10.1021/cr068445e.
27. P. B. Santhosh and N. P. Ulrih, Cancer Lett., 336, No. 1: 8 (2013); https://doi.org/10.1016/j.canlet.2013.04.032.
28. R. Jin, B. Lin, D. Li, and H. Ai, Curr. Opin. Pharmacol., 18: 18 (2014); https://doi.org/10.1016/j.coph.2014.08.002.
29. Y. X. J. Wang, Quant. Imaging Med. Surg., 1, No. 1: 35 (2011); https://dx.doi.org/10.3978%2Fj.issn.2223-4292.2011.08.03.
30. M. H. Rosner and M. Auerbach, Expert Rev. Hematol., 4, No. 4: 399 (2011); https://doi.org/10.1586/ehm.11.31.
31. F. Roohi, J. Lohrke, A. Ide, G. Schutz, and K. Dassler, Int. J. Nanomedicine, 7: 4447 (2012); https://dx.doi.org/10.2147%2FIJN.S33120.
32. F. Ni, L. Jiang, R. Yang, Z. Chen, X. Qi, and J. Wang, J. Nanosci. Nanotechnol., 12, No. 3: 2094 (2012); https://doi.org/10.1166/jnn.2012.5753.
33. K. C. Briley-Saebo, L. O. Johansson, S. O. Hustvedt, A. G. Haldorsen, A. Bjornerud, Z. A. Fayad, and H. K. Ahlstrom, Invest. Radiol., 41, No. 7: 560 (2006); https://doi.org/10.1097/01.rli.0000221321.90261.09.
34. B. Ye. Paton, B. O. Movchan, Yu. A. Kurapov, and K. Yu. Yakovchuk, U.A. Pat. # 92556 from 10.11.2010, Bull. # 21/2010 (2010) (in Ukrainian); http://base.ukrpatent.org/searchINV/search.php?action=viewdetails&IdClai m=151646.
35. A. D. Lebedev, Y. N. Levchuk, A. V. Lomakin, and V. A. Noskin, Laser Correlation Spectroscopy in Biology (Kiev: Naukova Dumka: 1987); https://search.rsl.ru/ru/record/01001388286.
36. H. G. Merkus, Particle Size Measurements. Fundamentals, Practice, Quality, (Springer: 2009); http://www.springer.com/gp/book/9781402090158.
37. Doklinichni Doslidzhennya Likarskykh Zasobiv: Metodychni Rekomendatsii (Ed. O. V. Stefanov) (Kyiv: Avitsena: 2001); https://www.twirpx.com/file/537410/.
38. V. S. Antonov, N. V. Bogomolova, and A. S. Volkov, Avtomatizatsija Gematologicheskogo Analiza: Spravochnik Zaveduyushchego KlinikoDiagnosticheskoy Laboratoriey (2010); http://www.mcfr.ru/journals/41/256/17837/21349.
39. V. S. Kamyshnikov, O. A. Volotovskaya, and A. B. Khodyukova, Metody Klinicheskikh Laboratornykh Issledovaniy (Ed. V. S. Kamyshnikov) (Moscow: MEDpress-inform: 2013); http://www.medpress.ru/upload/iblock/7c7/7c74480a0c810516688f16c98f54ab0a.pdf.
40. B. A. Movchan and A. V. Demchishin, Fizika Metallov i Metallovedenie, 28, No. 4: 653 (1969); http://impo.imp.uran.ru/fmm/Electron/vol28_4/abstract10.pdf.
41. A. S. Kaygorodov, V. V. Ivanov, S. N. Paranin, and A. A. Nozdrin, Nanotechnologies in Russia, 2: 112 (2007) (in Russian); http://pleiades.online/ru/journals/search/?name=nanotech
42. J. H. de Boer, The Dynamic Character of Adsorption (London: Oxford University Press: 1968); https://books.google.com.ua/books?id=e8N4AAAAIAAJ&hl=ru&source=gbs _book_other_versions.
43. E. Leibnitz und H. G. Struppe, Handbuch der Gaschromatographie (Leipzig: Akademishe Verlagsgesellschaft Geest&Porting K.-G.: 1984); http://onlinelibrary.wiley.com/doi/10.1002/food.19850290727/abstract.
44. C. T. Nelson, J. W. Elam, M. A. Cameron, M. A. Tolbert, and S. M. George, Surface Science, 416: 341 (1998); https://doi.org/10.1016/S0039- 6028(98)00439-7.
45. Lj. Kundacovic, D. R. Mullins, and S. H. Overbury, Surface Science, 457: 51 (2000); https://doi.org/10.1016/S0039-6028(00)00332-0.
46. K. Lind, M. Kresse, N. P. Debus, and R. H. Muller, J. Drug Target., 10, No 3: 221 (2002); https://doi.org/10.1080/10611860290022651.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement