Issues

 / 

2020

 / 

vol. 18 / 

Issue 2

 



Download the full version of the article (in PDF format)

O. M. Berdnikova, A. V. Bernatskyi, V. D. Pozniakov, T. O. Alekseienko, V. M. Sydorets, O. I. Bushma
«Nanoscale Structures of Laser–Arc Welded Joints of High-Strength Low-Alloy Steels»
333–344 (2020)

PACS numbers: 06.60.Vz, 42.62.Cf, 81.07.-b, 81.20.Vj, 81.40.Np, 81.70.Bt, 89.20.Bb

Low-alloyed high-strength steels with a yield strength of above 600 MPa are widely used for the manufacture of various types of critical-purpose constructions (freight cars, bridges, pressure vessels, truck bodies of lorries, parts of load-lifting cranes, pipelines, ship hulls, etc.). Arc welding of these steels cannot satisfy the industry due to both the low productivity and the need for a heat treatment before or after welding. Without heat treatment, cold cracks form in these steels in the overheating area or in the weld where the metal is quenched during welding, and softening zones appear in the heat-affected zone outside the quenching sites. The hybrid laser–arc welding is becoming more common in the industry. This is due to the prospect of introducing hybrid laser–arc welding instead of arc processes, since such a replacement does not require a relatively large expenditure on the re-training of production and provides a noticeable increase in productivity. At the same time, a significant part of the thermal power required to melt the metal in hybrid laser–arc welding is provided by the use of cheap arc power sources. Previously, the authors determined the optimal speed of hybrid laser–arc welding from the point of view of the phase composition of the structural components, dispersion of the grain structure, the proportion of brittle fracture, etc. However, it was not clear, what effect of the dislocation structure is on the crack resistance measure—fracture toughness. The aim of this paper is to study the effect of external bending load on the dislocation structure and on fracture toughness of low-alloyed high-strength steel welded joints produced by hybrid laser–arc welding by the mode at optimum welding rate. The structural factors, which guarantee a high level of strength and crack resistance of welded joints of high-strength steel, are identified. As shown, the complex of properties of welded joints under external loading in a wide range of temperature conditions ensures the formation of fragmented lower bainite structure with a uniform distribution of the dislocation density and nanoparticles of carbide phases.

Keywords: low-alloyed high-strength steel, hybrid laser–arc welding, structure–phase composition, nanoscale structures, dislocation density, crack growth resistance

https://doi.org/10.15407/nnn.18.02.333

References
1. T. K. Roy, Bhattacharya, C. B. Ghosh, and S. K. Ajmani, Advanced High Strength Steel: Processing and Applications (Singapore: Springer: 2018); https://doi.org/10.1007/978-981-10-7892-7.
2. S. K. Sharma and S. Maheshwari, Journal of Natural Gas Science and Engineering, 38: 203 (2017); https://doi.org/10.1016/j.jngse. 2016.12.039.
3. J. Villalobos, A. Del-Pozo, B. Campillo, J. Mayen, and S. Serna, Metals, 8, No. 5: 351 (2018); https://doi.org/10.3390/met8050351.
4. R. Oyyaravelu, P. Kuppan, and N. Arivazhagan, Journal of Advanced Research, 7, No. 3: 463 (2016); https://doi.org/10.1016/j.jare.2016.03.005.
5. V. Poznyakov, O. Berdnikova, and O. Bushma, Materials Science Forum, 870: 630 (2016); https://doi.org/10.4028/www.scientific.net/MSF.870.630.
6. J. Zhou, J. Yang, Y. Ye, and G. Dai, Proc. International Conference on Advanced Technology of Design and Manufacture (November 23–25, 2010) (Beijing: IET: 2010), p. 28; https://doi.org/10.1049/cp.2010.1254.
7. V. Poznyakov, L. Markashova, O. Berdnikova, and T. Alekseienko, S. Zhdanov, Materials Science Forum, 927: 29 (2018); https://doi.org/10.4028/www.scientific.net/MSF.927.29.
8. L. Markashova, O. Berdnikova, A. Bernatskyi, M. Iurzhenko, and V. Sydorets, Proc. Young Scientists Forum on Applied Physics and Engineering (October 17–20, 2017) (Lviv: IEEE: 2017), p. 88; https://doi.org/10.1109/YSF.2017.8126596.
9. B. Acherjee, Optics & Laser Technology, 99: 60 (2018); https://doi.org/10.1016/j.optlastec.2017.09.038.
10. F. Liu, X. Yu, C. Huang, L. He, Y. Chen, and W. Bu, J. Wuhan Univ. Technology–Mat. Sci. Edit., 30, No. 4: 827 (2015); https://doi.org/10.1007/s11595-015-1236-0.
11. F. Farrokhi, J. Siltanen, and A. Salminen, Journal of Manufacturing Science and Engineering, 137, No. 6: 061012 (2015); https://doi.org/10.1115/1.4030177.
12. M. Rossini, P. R. Spena, L. Cortese, P. Matteis, and D. Firrao, Materials Science and Engineering: A, 628: 288 (2015); https://doi.org/10.1016/j.msea.2015.01.037.
13. M. Sokolov, A. Salminen, E. I. Khlusova, M. M. Pronin, M. Golubeva, and M. Kuznetsov, Physics Procedia, 78: 255 (2015); https://doi.org/10.1016/j.phpro.2015.11.036.
14. X. Cao, P. Wanjara, J. Huang, C. Munro, and A. Nolting, Materials & Design, 32, No. 6: 3399 (2011); https://doi.org/10.1016/j.matdes.2011.02.002.
15. O. G. Levchenko, A. O. Lukianenko, O. V. Demetska, and O. Yu. Arlamov, Materials Science Forum, 927: 86 (2018); https://doi.org/10.4028/www.scientific.net/MSF.927.86.
16. N. Pavlov, A. Kryukov, D. Il’Yaschenko, and D. Chinakhov, Materials Science Forum, 906: 137 (2017); https://doi.org/10.4028/www.scientific.net/MSF.906.137.
17. S. Katayama, Handbook of Laser Welding Technologies (Cambridge: Woodhead Publishing Limited: 2013).
18. U. Reisgen, I. Krivtsun, B. Gerhards, and A. Zabirov, Journal of Laser Applications, 28, No. 2: 022402 (2016); https://doi.org/10.2351/1.4944096.
19. V. D. Shelyagin, I. V. Krivtsun, Yu. S. Borisov, V. Yu. Khaskin, T. N. Nabok, A. V. Siora, A. V. Bernatsky, S. G. Vojnarovich, A. N. Kislitsa, and T. N. Nedej, Avtomaticheskaya Svarka, 8: 49 (2005).
20. I. Krivtsun, U. Reisgen, O. Semenov, and A. Zabirov, Journal of Laser Applications, 28, No. 2: 022406 (2016); https://doi.org/10.2351/1.4943994.
21. M. Rethmeier, S. Gook, M. Lammers, and A. Gumenyuk, Transactions of JWRI, 27, No. 2: 74 (2009); https://doi.org/10.2207/qjjws.27.74s.
22. M. A. Kesse, E. A. Gyasi, and P. Kah, Proc. the 27th International Ocean and Polar Engineering Conference (June 25–30, 2017) (San Francisco: International Society of Offshore and Polar Engineers: 2017), p. 42.
23. F. Mirakhorli, X. Cao, X. T. Pham, P. Wanjara, and J. L. Fihey, Materials Science Forum, 879: 1305 (2017); https://doi.org/10.4028/www.scientific.net/MSF.879.1305.
24. F. Farrokhi, R. M. Larsen, and M. Kristiansen, 89: 49 (2017); https://doi.org/10.1016/j.phpro.2017.08.019.
25. X. Cao, P. Wanjara, J. Huang, C. Munro, and A. Nolting, Materials & Design, 32, No. 6: 3399 (2011); https://doi.org/10.1016/j.matdes.2011.02.002.
26. A. Kurc-Lisiecka and A. Lisiecki, Materiali in Tehnologije, 51, No. 7: 199 (2017); https://doi.org/0.1515/amm-2017-0253.
27. W. Guo, J. A. Francis, L. Li, A. N. Vasileiou, D. Crowther, and A. Thompson, Materials Science and Technology, 32, No. 14: 1449 (2016); https://doi.org/10.1080/02670836.2016.1175687.
28. L. Markashova, O. Berdnikova, T. Alekseienko, A. Bernatskyi, and V. Sydorets, Advances in Thin Films, Nanostructured Materials, and Coatings (Eds. A. D. Pogrebnjak and V. Novosad) (Singapore: Springer: 2019), p. 119; https://doi.org/10.1007/978-981-13-6133-3_12.
29. V. Yerofeyev, R. Logvinov, V. Nesterenkov, and A. Mazo, Welding International, 28: 557 (2014); https://doi.org/10.1080/09507116.2013.840042.
30. A. Unt, I. Poutiainen, S. Grunenwald, M. Sokolov, and A. Salminen, Applied Sciences, 7, No. 12: 1276 (2017); https://doi.org/10.3390/app7121276.
31. I. L. Semenov, I. V. Krivtsun, and U. Reisgen, Journal of Physics D: Applied Physics, 49, No. 10: 105204 (2016); https://doi.org/10.1088/0022- 3727/49/10/105204.
32. D. Chinakhov, E. Chinakhova, S. Grichin, and Y. Gotovschik, IOP Conference Series: Materials Science and Engineering, 125: 012013 (2016); https://doi.org/10.1088/1757-899X/125/1/012013.
33. D. Chinakhov and E. Agrenich, Materials Science Forum, 575: 833 (2008); https://doi.org/10.4028/www.scientific.net/MSF.575-578.833.
34. H. Alipooramirabad, R. Ghomashchi, A. Paradowska, and M. Reid, Journal of Materials Processing Technology, 231: 456 (2016); https://doi.org/10.1016/j.jmatprotec.2016.01.020.
35. H. Alipooramirabad, A. Paradowska, R. Ghomashchi, and M. Reid, Journal of Manufacturing Processes, 28: 70 (2017); https://doi.org/10.1016/j.jmapro.2017.04.030.
36. J. C. F. Jorge, J. L. D. Monteiro, A. J. de Carvalho Gomes, I. de Souza Bott, L. F. G. de Souza, M. C. Mendes, and L. S. Araujo, Journal of Materials Research and Technology, 8, Iss. 1: 561 (2019); https://doi.org/10.1016/j.jmrt.2018.05.007.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement