Issues

 / 

2020

 / 

vol. 18 / 

Issue 2

 



Download the full version of the article (in PDF format)

M. A. Alieksandrov, A. I. Misiura, T. M. Pinchuk-Rugal, Yu. E. Grabovskii, A. P. Onanko, O. P. Dmytrenko, M. P. Kulish, E. L. Pavlenko, T. O. Busko, ▓. P. Pundyk, A. M. Gaponov, └. ▓. Lesiuk
«Structural Features of Polymer Nanocomposite LDPEľMWCNT in the Percolation Transition Region of Electrical Conductivity»
299–310 (2020)

PACS numbers: 61.41.+e, 61.48.De, 62.23.Pq, 62.25.-g, 72.80.Tm, 73.61.Ph, 73.63.Fg

The behaviour of electrical conductivity, \(\sigma_{dc}\), in nanocomposites LDPEľ MWCNT, depending on the nanotubesĺ content, in the formation of the segregated filler morphology is considered. In this structure of nanocomposites, a low threshold value of percolation (\(\varphi_{c}\)=0.00099 vol. fract.) is obtained. As shown, only at low concentrations of nanotubes, there is a correlation in the changes of the crystallinity degree and the indicated physicalľmechanical characteristics revealed by the methods of determining the crystallinity degree and the dynamic elastic modulus, shear modulus, and Poissonĺs coefficients from the ultrasonic propagation velocities (~1 MHz). The orientational structure of the macromolecules adsorbed on the surface of the nanotubes appears at higher concentrations of MWCNT, when the crystallinity degree of the polymer matrix drops. The change in the polymer parameters that affects both the tunnelling of electrons in the region of interphase layers and, therefore, the change in electrical conductivity can be achieved by modifying the polymer matrix with \(\pi\)-conjugated materials, including dyes.

Keywords: low-density polyethylene (LDPE), multi-walled carbon nanotubes (MWCNT), electrical conductivity, degree of crystallinity, dynamic modules, dyes

https://doi.org/10.15407/nnn.18.02.299

References

1. B. I. Sazhin, Electrical Properties of Polymers (Leningrad: Khimiya: 1977) (in Russian).
2. D. F. OĺRegan, M. Akay, and B. Meenan, Composites Science and Technology, 59: 419 (1999); https://doi.org/10.1016/S0266-3538(98)00089-X.
3. F. Garnier, Uspekhi Fizicheskikh Nauk, 157, No. 3: 513 (1989) (in Russian).
4. A. R. Blythe and D. Bloor, Electrical Properties of Polymers (Moscow: Fizmatlit: 2008) (Russian translation).
5. Ye. P. Mamunya, Journal of Macromolecular Science. Part B, 38, Nos. 5ľ6: 615 (1999); DOI: 10.1080/00222349908248125.
6. Ye. Mamunya, M. Iurzhenko, E. Lebedev et al., Electroactive Polymer Materials (Kyiv: Alfa Reklama: 2013) (in Ukrainian).
7. G. V. Kozlov, Uspekhi Fizicheskikh Nauk, 185, No. 1: 35 (2015) (in Russian).
8. └. Ď. Ponomarenko, └. R. Ďameev, and V. G. Shevchenko, Uspekhi Khimii, 87: 923 (2018).
9. └. V. ┼letskii, Uspekhi Fizicheskikh Nauk, 167, No. 9: 945 (1997) (in Russian).
10. E. G. Rakov, Uspekhi Khimii, 70: 943 (2001).
11. └. V. ┼letskii, Uspekhi Fizicheskikh Nauk, 172, No. 4: 401 (2002) (in Russian).
12. └. V. ┼letskii, Uspekhi Fizicheskikh Nauk, 174, No. 11: 1191 (2004) (in Russian).
13. └. V. ┼letskii, Uspekhi Fizicheskikh Nauk, 177, No. 3: 223 (2007) (in Russian).
14. └. V. ┼letskii, Uspekhi Fizicheskikh Nauk, 179, No. 3: 225 (2009) (in Russian).
15. └. V. ┼letskii, Uspekhi Fizicheskikh Nauk, 180, No. 9: 897 (2010) (in Russian).
16. └. V. ┼letskii, Uspekhi Fizicheskikh Nauk, 185, No. 3: 225 (2015) (in Russian).
17. P. J. Harris, International Materials Reviews, 49, Iss. 1: 31 (2004); DOI: 10.1179/095066004225010505.
18. M. O. Lisunova, Y. P. Mamunya, N. I. Lebovka, and A. V. Melezhyk, European Polymer Journal, 43, No. 3: 949 (2007); doi:10.1016/j.eurpolymj.2006.12.015.
19. C. Min, X. Shen, Z. Shi, L. Chen, and Zh. Xu, Polymer-Plastics Technol. Eng., 49, Iss. 12: 1172 (2010); https://doi.org/10.1080/03602559.2010.496405.
20. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Prog. Polymer Science, 35, Iss. 3: 357 (2010); https://doi.org/10.1016/j.progpolymsci.2009.09.003.
21. E. R. Badamshina, M. P. Gafurova, and Ya. I. Estrin, Uspekhi Khimii, 79: 1028 (2010) (in Russian).
22. G. Cavallaro, R. De Lisi, G. Lazzara, and S. Milioto, J. Therm. Anal. Calorimetry, 112: 383 (2013); https://doi.org/10.1007/s10973-012-2766-8.
23. L. Bardash, G. Boiteux, R. Grykien, I. Giowacki, M. Pastorczak, J. Ulanski, and A. M. Fainleib, Polymer Journal, 40, No. 4: 230 (2018); DOI: 10.15407/polymerj.40.04.230.
24. └. L. Svistunov, L. A. Komar, G. Heinrich et al., Polymer Science, 50, No. 5: 903 (2008) (in Russian).
25. B. └. Komarov, E. A. Dzhavadyan, V. I. Irzhak et al., Polymer Science, 53, No. 6: 903 (2011) (in Russian).
26. D. S. McLachlan, Physica A, 157, Iss. 1: 188 (1989); https://doi.org/10.1016/0378-4371(89)90299-9.
27. D. S. McLachlan, C. Chiteme, W. D. Heiss, and J. Wu, Physica B, 338, Iss. 1ľ4: 261 (2003); https://doi.org/10.1016/j.physb.2003.08.003.
28. D. S. McLachlan, C. Chiteme, W. D. Heiss, and J. Wu, Physica B, 338, Iss. 1ľ4: 256 (2003); https://doi.org/10.1016/j.physb.2003.08.002.
29. D. S. McLachlan and G. Sauti, J. Nanomater., 3: 1 (2007); https://doi.org/10.1155/2007/30389.
30. ┼. └. Lysenkov, Yu. V. Yakovlev, and V. V. Klepko, Polymer Journal, 35: 259 (2013) (in Ukrainian).
31. ┼. └. Lysenkov and V. V. Klepko, Journal of Nano- and Electronic Physics, 5, No. 3: 03052 (2013) (in Ukrainian).
32. Z. O. Haholkina, E. V. Lobko, Yu. V. Yakovlev et al., Polymer Journal, 37, No. 2: 157 (2015) (in Ukrainian).
33. ┼. └. Lysenkov, V. V. Klepko, and Yu. V. Yakovlev, Journal of Nano- and Electronic Physics, 7, No. 1: 01031 (2015) (in Ukrainian).
34. ┼. └. Lysenkov, V. V. Klepko, and Yu. V. Yakovlev, Surface Engineering and Applied Elastochemistry, 52: 62 (2016) (in Russian).
35. E. A. Lysenkov, Z. O. Haholkina, E. V. Lobko, M. H. Tkalich, and V. V. Klepko, Mater. Sci., 53, No. 1: 14 (2017); https://doi.org/10.1007/s11003-017-0037-3.
36. E. V. Lobko, Z. O. Gagolkina, Yu. V. Yakovlev, E. A. Lysenkov, and V. V. Klepko, Nanosistemi, Nanomateriali, Nanotehnologii, 15, No. 2: 345 (2017) (in Ukrainian); https://doi.org/10.15407/nnn.15.02.0345.
37. S. Kivelson, Phys. Rev. B, 25, No. 5: 3798 (1982).
38. J. L. Bredas, R. R. Chance, and R. Silbey, Phys. Rev. B, 26, No. 10: 5843 (1982).
39. P. Kuivalainen, H. Stubb, H. Isotalo, P. Yli-Lahti, and C. Holmstrom, Phys. Rev. B, 31, No. 12: 7900 (1985).
40. A. V. Tkachev, D. N. Kiselev, V. A. Tverskoi et al., Polymer Science, 36, No. 8: 1326 (1994) (in Russian).
41. H. M. Zidan, A. Tawansi, and M. Abu-Elnader, Physica B, 339: 78 (2003).
42. H. M. Zidan, J. Polymer Science, 41: 112 (2003).
43. H. M. Zidan and M. Abu-Elnader, Physica B, 355: 308 (2005).
44. H. M. Zidan, A. El-Khodary, I. A. El-Sayed, and H. I. El-Bohy, J. Applied Polymer Sci., 117: 1416 (2010); https://doi.org/10.1002/app.31939.
45. H. M. Zidan, N. A. El-Ghamaz, A. M. Abdelghany, and A. L. Waly, Int. J. Electrochem. Sci., 11: 9041 (2016); https://doi.org/10.1016/j.saa.2018.03.057.
46. A. D. Kachkovsky, E. L. Pavlenko, E. V. Sheludko et al., Functional Materials, 26, No. 1: 1 (2017).
47. G. P. Karpacheva, Polymer Science, 42, No. 11: 1974 (2000) (in Russian).
48. M. G. Krakovyak, E. V. Anufrieva, T. D. Ananĺeva et al., Polymer Science, 48, No. 6: 926 (2006) (in Russian).
49. E. R. Badamshina and M. P. Gafurova, Polymer Science, 49, No. 7: 1306 (2007) (in Russian).
50. E. R. Badamshina and M. P. Gafurova, Polymer Science, 5, No. 8: 1572 (2008) (in Russian).
51. K. Joseph, S. Thomas, and C. Pavithran, J. Reinforced Plast. Compos., 12: 139 (1993).
52. D. Blond, V. Barron, M. Ruether et al., Adv. Funct. Matter., 16: 1608 (2006).
53. C. S. Reddy and C. K. Das, Polymers & Polymer Composites, 14, No. 3: 281 (2006).
54. A. Mierczynska, M. Mayne-LĺHermite, G. Boiteux, and J. K. Jeszka, J. of Applied Polymer Sci., 105: 158 (2007); DOI 10.1002/app.26044.
55. C. N. Della and D. Shu, Solid State Phenomena, 146: 45 (2008).
56. R. N. Brandalise, M. Zeni, J. D. N. Martins, M. M. C. Forte, Polymer Bulletin, 62: 33 (2009); https://doi.org/10.1007/s00289-008-0989-4.
57. K. Sewda and S. N. Maiti, Polymer Bulletin, 70: 2657 (2013).
58. M. Sabet and H. Soleimanti, IOP Conf. Series Matter. Eng., 64: 012001 (2014).
59. A. I. Misiura, Y. P. Mamunya, V. L. Demchenko et al., Polymer Journal, 39, No. 3: 154 (2017) (in Ukrainian).
60. L. Li, L. Zhong, K. Zhang, J. Gao, and M. Xu, Materials, 11, No. 10: 1922 (2018); https://doi.org/10.3390/ma11101922.
61. E. R. Badamshina, Ya. I. Estrin, and A. A. Grischuk, Polymer Science, 54, No 4: 568 (2012) (in Russian).
62. Ď. ╠. Pinchuk-Rugal, ╬. S. Nychyporenko, ╬. P. Dmytrenko et al., Problems of Atomic Science and Technology, 5: 173 (2013).
63. ╬. S. Nychyporenko, ╬. P. Dmytrenko, Ď. ╠. Pinchuk-Rugal et al., Problems of Atomic Science and Technology, 2: 99 (2016).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement