vol. 18 / 

Issue 2


Download the full version of the article (in PDF format)

Renata Balog, Viktoria Simon, Maryna Manilo, Laszlo Vanyorek, Zoltan Csoma, Sandor Barany
«Comparative Study of Ni(II) and Cu(II) Adsorption by As-Prepared and Oxidized Multi-Walled N-Doped Carbon Nanotubes»
283–298 (2020)

PACS numbers: 47.57.jd, 61.48.De, 68.37.Og, 68.43.-h, 68.65.-k, 81.05.ub, 82.65.+r

The laws and mechanisms of adsorption of Ni(II) and Cu(II) ions by well-characterized as-prepared and oxidized N-doped multi-walled carbon nanotubes (N-CNTs) are described and discussed. The samples are synthesized by catalytic chemical vapour deposition method using n-butylamine as carbon source and Ni(NO\(_3\))\(_2\) + MgO as catalyst and purified by treatment with HCl. The surface functionalization is performed using oxidation with mixture of concentrated H\(_2\)SO\(_4\) and HNO\(_3\). As shown, adsorption of Ni(II) and Cu(II) reaches equilibrium value within 20–30 min; adsorption results in a moderate decrease in the suspension pH for pristine N-CNTs (1.0–1.5 pH unit) and a considerable lowering the pH for oxidized sample (up to 2.5 pH unit); the adsorption isotherms are described by the Langmuir equation; the plateau amounts of adsorption (25–30 mg/g for Cu and 35–40 mg/g for Ni) are almost the same for both as-prepared and oxidized samples; at pH 8.0 and higher for Ni and pH 6.5 and higher for Cu ions, a sharp increase in adsorption is observed that is caused by the hydroxides’ precipitation. The spectroscopic, adsorption, electrophoretic and pH measurements’ data testify that below pH of hydroxide precipitation, the major mechanism of adsorption by as-prepared N-CNTs is the donor–acceptor interaction between the free electron pair of N atoms incorporated into nanotubes’ lattice and vacant d-orbital of the adsorbing Ni(II) or Cu(II) ions. For the oxidized N-CNTs, ion-exchange processes with a release of H\(^+\) may play minor role.

Keywords: N-doped multi-walled carbon nanotubes, Ni(II) and Cu(II) ions, adsorption, kinetics

1. X. Ren, C. Chen, M. Nagatsu, and X. Wang, Chem. Eng. J., 170, Nos. 2–3: 395 (2011);
2. Y.-H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, and B. Wei, Chem. Phys. Lett., 357, Nos. 3–4: 263 (2002);
3. K. Pyrzynska and M. Bystrzejewski, Colloids Surf. A, 362: 102 (2010);
4. M. V. Manilo, Z. Z. Choma, and S. Barany, Colloid J., 79, No. 2: 212 (2017);
5. Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, and D. Wu, Carbon, 41: 1057 (2003);
6. Ch. Chen and X. Wang, Ind. Eng. Chem. Res., 45, No. 26: 9144 (2006);
7. Sh. Yang, J. Li, D. Shao, J. Hu, and X. Wang, J. Hazard. Mater., 166, No. 1: 109 (2009);
8. M. Kandah and J.-L. Meunier, J. Hazad. Mater., 146, Nos. 1–2: 283 (2007);
9. Ch. Lu and Ch. Liu, J. Chemical Technology and Biotechnology, 81, No. 12: 1932 (2006);
10. F. Giannakopoulou, C. Haidouti, D. Gasparatos, I. Massasand, and G. Tsiakatouras, Desalination and Water Treatment, 57, No. 25: 11623 (2016);
11. A. Stafiej and K. Pyrzynska, Separation and Purification Technology, 58: 49 (2007);
12. L. Vanyorek, G. Muranszky, B. Fiser, E. Sikura, Zs. Hutkai, and B. Viskolcz, J. Disp. Sci. Techn., 40: 1 (2019);
13. D. A. Bulushev, A. L. Chuvilin, V. I. Sobolev, S. G. Stolyarova, Y. V. Shubin, I. P. Asanov, A. V. Ishchenko, G. Magnani, M. Ricco, A. V. Okotrub, and L. G. Bulusheva, J. Mat. Chem. A, 5: 10574 (2017);
14. G. P. Rao, Ch. Lu, and F. Su, Separ. Purfic. Techn., 58: 224 (2007);
15. M. A. Salam, Gh. Al-Zhrani, and S. A. Kosa, Comptes Rendus Chimie, 15, No. 5: 398 (2012);
16. A. Gadhave and J. Waghmare, International J. Chemical Sci. Applications, 5, No. 2: 56 (2014).
17. Zh. Gao, T. J. Bandosz, Z. Zhao, M. Hanand, and J. Qiu, J. Hazardous Materials, 167, Nos. 1–3: 357 (2009);
18. L. Vanyorek, R. Meszaros, and S. Barany, Colloids and Surfaces A, 448: 140 (2014);
19. S. Barany, N. Kartel’, and R. Meszaros, Colloid J., 76: 509 (2014);
20. S. Gomez, N. M. Rendtorff, E. F. Aglietta, Y. Sakka, and G. Suarez, Applied Surface Sci., 379: 264 (2016);
21. K. Csoban, M. Parkanyi-Berka, P.Joo, and Ph. Behrab, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 141, No. 3: 347 (1998);
22. K. Csoban and P.Joo, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151, Nos. 1–2: 97 (1999);
23. J. Lakatos, S. D. Brown, and C. E. Snape, Fuel, 81, No. 5: 691 (2002);
24. M. Ajmal, R. A. K. Rao, R. Ahmad, J. Ahmad, and L. A. K. Rao, J. Hazardous Materials, 87, Nos. 1–3: 127 (2001);
25. M. V. Manilo, Z. Z. Choma, and S. Barany, Colloid J., 79, No. 2: 212 (2017);
26. K. A. Burkov, L. S. Lilic, and L. G. Sillien, Acta Chem. Scandinavia, 19: 14 (1965);
27. D. Novak-Adamic, B. Cosovic, H. Bilinski, and M. Branica, J. Inorg. Nucl. Chem., 35, No. 7: 2371 (1973); 1902(73)80303-3.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement