Issues

 / 

2020

 / 

vol. 18 / 

Issue 2

 



Download the full version of the article (in PDF format)

M. Eh. Bondarenko, P. M. Sylenko, Yu. M. Solonin, A. V. Ragulya, N. I. Gubareni, M. N. Zahornyi, O. Yu. Khyzhun, N. Yu. Ostapovska
«Nanostructured Composite O-g-C\(_3\)N\(_4\)/TiO\(_2\) for Photocatalytic Application Fabricated by Means of Synthesis of O-Doped Carbon Nitride on the Surface of Anatase Nanoparticles»
265–282 (2020)

PACS numbers: 71.20.Nr, 72.80.Le, 72.80.Tm, 78.40.-q, 81.07.Wx, 81.15.Gh, 81.20.-n

The new nanostructured composite material O-g-C\(_3\)N\(_4\)/TiO\(_2\) (anatase phase) is synthesized by means of the gas-phase method by deposition O-doped g-C\(_3\)N\(_4\) on nanosize particles of anatase powder (with a particle size of \(\widetilde{=}\)10 nm) under special reaction conditions of melamine pyrolysis in the presence of fixed volume of air. The deposition of O-g-C\(_3\)N\(_4\) (\(\widetilde{=}\)5–6% O) on the surface of anatase powder nanoparticles is confirmed by x-ray phase analysis, scanning electron microscopy, x-ray photoelectron spectroscopy and infrared spectroscopy with Fourier transform. SEM micrographs of the O-g-C\(_3\)N\(_4\)/TiO\(_2\) composite (anatase) nanoparticles demonstrate the arrangement of TiO\(_2\) as separate globular nanoparticles and clusters between the plates and in the channels of the porous bladed plates O-g-C\(_3\)N\(_4\). Using the UV and visible spectroscopy, it is found that, in the series from g-C\(_3\)N\(_4\)/TiO\(_2\) to O-g-C\(_3\)N\(_4\)/TiO\(_2\), a bathochromic shift of the long-wavelength edge of fundamental absorption band is observed in the spectra, and the band gap decreases from 2.6 eV to 2.3 eV, respectively. The synthesis of the nanostructured O-g-C\(_3\)N\(_4\)/TiO\(_2\) composite (anatase phase) by means of a single-stage method can be used as a cost-effective way to avoid the disadvantages of each component and to realize the synergic effect for creating more adsorption centres and active reaction centres due to doping with oxygen atoms and the construction of a heterojunction to increase the photocatalytic activity of the material.

Keywords: nanocomposite O-g-C\(_3\)N\(_4\)/TiO\(_2\), anatase, O-doped carbon nitride, melamine, photocatalyst, pyrolysis

https://doi.org/10.15407/nnn.18.02.265

References
1. F. Wei, Y. Liu, H. Zhao, X. Ren, J. Liu, T. Hasan, L. Chen, Y. Li, and B. Su, Nanoscale, 10, No. 9: 4515 (2018); https://DOI:10.1039/C7NR09660G.
2. R. Zhong, Z. Zhang, S. Luo, Z. C. Zhang, L. Huang, and M. Gu, Catal. Sci. Technol., 9, No. 1: 75 (2019); https://doi.org/10.1039/C8CY00965A.
3. J. Lei, B. Chen, W. Lv, L. Zhou, L. Wang, Y. Liu, and J. Zhang, Dalton Trans., 48, No. 10: 3486 (2019); https://doi.org/10.1039/C8DT04496A.
4. X. Chen, J. Wei, R. Hou, Y. Liang, Z. Xie, Y. Zhu, X. Zhang, and H. Wang, Appl. Catal., 188: 342 (2016); https://doi.org/10.1016/j.apcatb.2016.02.012.
5. H. Li, X. Wu, S. Yin, K. Katsumata, and Y. Wang, Appl. Surf. Sci., 392: 531 (2017); https://doi.org/10.1016/j.apsusc.2016.09.075.
6. G. Li, X. Nie, J. Chen, Q. Jiang, T. An, P. K. Wong, H. Zhang, H. Zhao, and H. Yamashita, Water Research, 86: 17 (2015); https://doi.org/10.1016/j.watres.2015.05.053.
7. J. Wen, J. Xie, X. Chen, and X. Li, Appl. Surf. Sci., 391: 72 (2017); https://doi.org/10.1016/j.apsusc.2016.07.030.
8. N. Andryushina, V. Shvalagin, G. Korzhak, G. Grodzyuk, S. Kuchmiy, and M. Skoryk, Appl. Surf. Sci., 475: 348 (2019); https://doi.org/10.1016/j.apsusc.2018.12.287.
9. G. Ya. Grodzyuk, V. V. Shvalagin, N. S. Andryushina, Ya.V. Panasiuk, G. V. Korzhak, S. Ya. Kuchmy, and N. A. Skoryk, Theor. Exp. Chem., 54, No. 2: 99 (2018); https://doi.org/10.1007/s11237-018-9552-z.
10. J. Li, B. Shen, and Z. Hong, Chem. Commun., 48, No. 98: 12017 (2012); https://doi.org/10.1039/c2cc35862j.
11. L. Ming, H. Yue, L. Xu, and F. Chen, J. Mater. Chem. A, 2, No. 45: 19145 (2014); https://doi.org/10.1039/C4TA04041D.
12. L. Q. Yang, J. F. Huang, L. Shi, L. Y. Cao, Q. Yu, Y. N. Jie, J. Fei, H. B. Ouyang, and J. H. Ye, Appl. Catal. B, 204: 335 (2017); https://doi.org/10.1016/j.apcatb.2016.11.047.
13. Z. F. Huang, J. Song, L. Pan, Z. Wang, X. Zhang, and J. J. Zou, Nano Energy, 12: 646 (2015); https://doi.org/10.1016/j.nanoen.2015.01.043.
14. X. Qu, S. Hu, J. Bai, P. Li, G. Lu, and X. Kang, New J. Chem., 42, No. 7: 4998 (2018); https://doi.org/10.1039/C7NJ04760F.
15. H. Wang, Y. Guan, S. Hu, Y. Pei, W. Ma, and Z. Fan, Nano, 14, No. 02: 1950023 (2019); https://doi.org/10.1142/S1793292019500231.
16. C. Wang, H. Fan, X. Ren, J. Ma, J. Fang, and W. Wang, Chem. Sus. Chem., 11, No. 4: 700 (2018); https://doi.org/10.1002/cssc.201702278.
17. S. Liu, D. Li, H. Sun, H. M. Ang, M. O. Tade, and S. Wang, J. Colloid Interface Sci., 48, No. 98: 176 (2016); https://doi.org/10.1016/j.jcis.2016.01.051.
18. P. X. Qiu, C. M. Xu, H. Chen, J. Fang, W. Xin, L. Ruifeng, and Z. Xirui, Appl. Catal. B, 206: 319 (2017); https://doi.org/10.1016/j.apcatb.2017.01.058.
19. X. Liu, H. Ji, J. Wang, J. Xiao, H. Yuan, and D. Xiao, J. Colloid Interface Sci., 505: 919 (2017); https://doi.org/10.1016/j.jcis.2017.06.082.
20. A. I. Kharlamov, M. E. Bondarenko, and N. V. Kirillova, Russ. J. Appl. Chem., 85, No. 2: 233 (2012); https://doi.org/10.1134/S1070427212020127.
21. A. I. Kharlamov, G. A. Kharlamova, and M. E. Bondarenko, Russ. J. Appl. Chem., 86, No. 2: 167 (2013); https://doi.org/10.1134/S1070427213020079.
22. A. I. Kharlamov, M. E. Bondarenko, and G. A. Kharlamova, Russ. J. Appl. Chem., 87, No. 9: 1284 (2014); https://doi.org/10.1134/S107042721409016X.
23. A. I. Kharlamov, M. E. Bondarenko, and G. A. Kharlamova, Diamond Relat. Mater., 61: 46 (2016); https://doi.org/10.1016/j.diamond.2015.11.006.
24. A. I. Kharlamov, M. E. Bondarenko, G. A. Kharlamova, and N. Gubareni, Diamond Relat. Mater., 66: 16 (2016); https://doi.org/10.1016/j.diamond.2016.03.012.
25. A. I. Kharlamov, M. E. Bondarenko, G. A. Kharlamova, and V. Fomenko, J.SolidStateChem., 241: 115 (2016); https://doi.org/10.1016/j.jssc.2016.06.003.
26. O. Kharlamov, M. Bondarenko, G. Kharlamova, P. Silenko, O. Khyzhun, and N. Gubareni, Nanostructured Materials for the Detection of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biolog. (Eds. J. Bonca and S. Kruchinin) (Dordrecht: Springer: 2018), Vol. 20: 245; https://doi.org/10.1007/978-94-024-1304-5_20
27. M. Bondarenko, P. Silenko, N. Gubareni, O. Khyzhun, N. Ostapovskaya, and Yu. Solonin, Him. Fiz. Tehnol. Poverhni, 9, No. 4: 393 (2018); https://doi.org/10.15407/hftp09.04.393.
28. M. E. Bondarenko, P. M. Silenko, Yu. M. Solonin, N. I. Gubareni, O. Yu. Khyzhun, and N. Yu. Ostapovskaya, Him. Fiz. Tehnol. Poverhni, 10, No. 4: 398 (2019); https://doi.org/10.15407/hftp10.04.398.
29. O. O. Kelyp, I. S. Petrik, V. S. Vorobets, N. P. Smirnova, and G. Ya. Kolbasov, Him. Fiz. Tehnol. Poverhni, 4, No. 1: 105 (2013); https://doi.org/10.15407/hftp04.01.105.
30. P. Wang, X. Guo, L. Rao, C. Wang, Y. Guo, and L. Zhang, Environ. Sci. Pollut. Res., 25, No. 20: 20206 (2018); https://doi.org/10.1007/s11356-018- 2201-1.
31. L. K. Putri, B.-J. Ng, C.-C. Er, W.-J. Ong, W. S. Chang, A. R. Mohamed, and S.-P. Chai, Appl. Surf. Sci., 504: 144427 (2020); https://doi.org/10.1016/j.apsusc.2019.144427.
32. F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, and W. K. Ho, ACS Appl. Mater Interfaces, 5, No. 21: 11392 (2013); https://doi.org/10.1021/am403653a.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement