Issues

 / 

2020

 / 

vol. 18 / 

Issue 2

 



Download the full version of the article (in PDF format)

O. V. Terletsky, S. M. Ryabchenko, V. I. Sugakov, G. V. Vertsimakha, and G. Karczewski
«Hybridization of Direct and Indirect Exciton States in Double Quantum Wells CdMgTe/Cd\(_{0.95}\)Mn\(_{0.05}\)Te/CdMgTe/CdTe/CdMgTe»
241–252 (2020)

PACS numbers: 33.20.Fb, 78.30.-j, 78.40.-q, 78.66.-w, 78.67.Sc, 81.05.U-, 81.15.-z

The photoluminescence from CdMgTe/Cd\(_{0.95}\)Mn\(_{0.05}\)Te/CdMgTe/CdTe/CdMgTe double quantum wells with Cd\(_{0.95}\)Mn\(_{0.05}\)Te well width of 46 ml (15 nm) and with several various CdTe wells’ widths is experimentally studied at the temperature of about 2 K in magnetic field up to 4.5 T in the region of intersection of magnetic-field dependences of exciton lines for spatially direct and spatially indirect exciton states. The discussed exciton lines correspond to the direct exciton localized in the Cd\(_{0.95}\)Mn\(_{0.05}\)Te quantum well and the indirect exciton with both the electron localized in the CdTe well and the heavy hole localized in the Cd\(_{0.95}\)Mn\(_{0.05}\)Te one. The energies of the exciton states are calculated within the variation approach. Differences between the magnetic-field dependences of the exciton lines in the region of the lines’ intersection and far from this region are revealed in experiments and are found in fulfilled calculations. As concluded, the region of these exciton lines’ crossing corresponds to the crossing of the energy positions of lowest spatially-quantized state of the conductivity electron in CdTe well with magnetic-field dependence of similar electron state in Cd\(_{0.95}\)Mn\(_{0.05}\)Te well.

Keywords: double quantum well, electron tunnelling, direct and indirect excitons, giant spin splitting of the exciton branches

https://doi.org/10.15407/nnn.18.02.241

References
1. L. V. Butov and A. I. Filin, Phys. Rev. B, 58: 1980 (1998); https://doi.org/10.1103/PhysRevB.58.1980.
2. V. B. Timofeev, A. V. Larionov, J. Zeman, G. Martinez, J. Hvam, D. Birkedal, and K. Soerensen, Physics Uspekhi, 41: 109 (1998).
3. A. V. Larionov, V. B. Timofeev, I. Khvam, and K. Soerensen, Sov. Phys. — JETP, 90: 1093 (2000).
4. L. V. Butov, C. W. Lai, A. L. Ivanov, A. C. Gossard, and D. S. Chemla, Nature, 417: 47 (2002); https://doi.org/10.1038/417047a.
5. L. V. Butov, A. C. Gossard, and D. S. Chemla, Nature, 418: 751 (2002).
6. D. Shoke, S. Denev, Y. Liu, L. Pfeifer, and K. West, Nature, 418: 754 (2002); https://doi.org/10.1038/nature00940.
7. A. V. Gorbunov and V. B. Timofeev, JETP Lett., 83: 146 (2006); https://doi.org/10.1134/S0021364006040047.
8. P. Andreakou, A. V. Mikhailov, S. Cronenberger, D. Scalbert, A. Nalitov, A. V. Kavokin, M. Nawrocki, L. V. Butov, K. L. Campman, A. C. Gossard, and M. Vladimirova, Phys. Rev. B, 93: 115410 (2016); https://doi.org/10.1103/PhysRevB.93.115410.
9 I. I. Reshina, S. V. Ivanov, D. N. Mirlin, I. V. Sedova, and S. V. Sorokin, Phys. Rev. B, 74: 235324 (2006); https://doi.org/10.1103/PhysRevB.74.235324.
10. A. Akimov, T. Godde, K. V. Kavokin, D. R. Yakovlev, I. I. Reshina, I. V. Sedova, S. V. Sorokin, S. V. Ivanov, Yu. G. Kusrayev, and M. Bayer, Phys. Rev. B, 95: 155303 (2017); https://doi.org/10.1103/PhysRevB.95.155303.
11. S. Lee, M. Dobrowolska, J. K. Furdyna, H. Luo, and L. R. Ram-Mohan, Phys. Rev. B, 54: 16939 (1996); https://doi.org/10.1103/PhysRevB.54.16939.
12. S. V. Zaitsev, A. S. Brichkin, P. S. Dorozhkin, and G. Bacher, Semiconductors, 42: 813 (2008); https://doi.org/10.1134/S1063782608070117.
13. S. V. Zaitsev, A. S. Brichkin, P. S. Dorozhkin, and G. Bacher, JETP Letters, 84: 340 (2006).
14. O. V. Terletskii, S. M. Ryabchenko, V. Y. Sugakov, G. V. Vertsimakha, G. Karczewski, phys. status solidi C, 14, No. 5: 1700124 (2017); https://doi.org/10.1002/pssc.201700124.
15. A. V. Komarov, S. M. Ryabchenko, I. I. Zheru, R. D. Ivanchuk, and O. V. Terletskij, Sov. Phys. — JETP, 46: 318 (1977).
16. J. K. Furdyna, J. Appl. Phys., 64: R29 (1988); https://doi.org/10.10631.341700.
17. A. V. Vertsimakha, S. B. Lev, and V. I. Sugakov, Physics of the Solid State, 46: 948 (2004); https://doi.org/10.1134/1.1744975.
18. S. B. Lev, V. I. Sugakov, and G. V. Vertsimakha, J. Phys.: Cond. Mat., 16, No. 23: 4033 (2004); https://doi.org/10.1088/0953-8984/16/23/020.
19. A. S. Davydov, Quantum Mechanics (Oxford: Pergamon Press: 1965); https://www.twirpx.com/file/2879375/.
20. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Berlin–Heidelberg: Springer-Verlag: 1999); https://www.springer.com/gp/book/9783540642268.
21. A. N. Kosarev, S. V. Poltavtsev, L. E. Golub, M. M. Glazov, M. Salewski, N. V. Kozyrev, E. A. Zhukov, D. R. Yakovlev, G. Karczewski, S. Chusnutdinow, T. Wojtowicz, I. A. Akimov, and M. Bayer, Phys. Rev. B, 100: 121401 (2019); https://doi.org/10.1103/PhysRevB.100.121401.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement