Issues

 / 

2020

 / 

vol. 18 / 

Issue 1

 



Download the full version of the article (in PDF format)

Ehsan Nabi Abdolyousefi, Ghasem Rahimi, Azita Mohammadbeygi, Hamideh Dehghani, Masoud Negahdary
«Antibacterial Assessment of Zinc Sulphide Nanoparticles Against Streptococcus pyogenes and Acinetobacter baumannii»
171–188 (2020)

PACS numbers: 81.07.-b, 81.16.-c, 81.20.Fw, 87.19.xb, 87.64.Cc, 87.64.Ee, 87.85.Rs

In this study, the antibacterial assessment of zinc sulphide nanoparticles (ZnS NPs) against Streptococcus pyogenes and Acinetobacter baumannii is investigated. ZnS NPs were synthesized through a co-precipitation method using Polyvinylpyrrolidone (PVP), Polyvinyl alcohol (PVA), and Polyethylene Glycol (PEG). Size and morphology of the synthesized ZnS NPs are followed by a scanning electron microscope (SEM), and it is found that the size of the applied nanoparticles is about 20 nm. In order to evaluate the antibacterial effect of the synthesized ZnS NPs, various concentrations (50 µg/mL, 100 µg/mL and 150 µg/mL) were prepared. Antibacterial assessments are performed through the disc diffusion method in Mueller–Hinton agar culture medium, and the optical density (OD) method is performed by a UV-Vis spectrophotometer in Trypticase™ Soy Broth (TSB) medium. Then, in order to compare the antibacterial effects of the applied nanoparticles, several commercial antibiotics including Penicillin, Amikacin, Ceftazidime and Primaxin antibiotics are used. The achieved results indicate that the antibacterial effect of ZnS NPs has a direct relation against the concentrations, and the concentration of 150 µg/mL shows the highest antibacterial effect in comparison with others. In addition, the nanoparticles are more effective on Acinetobacter baumannii. The findings of this research suggest a novel approach against antibacterial resistance.

Keywords: zinc sulphide nanoparticles, antibacterial effects, Streptococcus pyogenes, Acinetobacter baumannii

https://doi.org/10.15407/nnn.18.01.171

References

1. C. Walsh, Antibiotics (Washington, DC: American Society of Microbiology: 2003).
2. Antibiotics in Laboratory Medicine (Ed. V. Lorian) (Philadelphia, Pa, USA: Lippincott Williams & Wilkins: 2005).
3. A. Ahovuo-Saloranta, U. M. Rautakorpi, O. V. Borisenko, H. Liira, J. W. Williams Jr., and M. Makela, Antibiotics for Acute Maxillary Sinusitis in Adults (The Cochrane Library: 2016), p. CD000243; doi: 10.1002/14651858.CD000243.pub4.
4. B. Spellberg, J. G. Bartlett, and D. N. Gilbert, New England Journal of Medicine, 368, Iss. 4: 299 (2013).
5. D. M. Livermore, Bacterial Resistance: Origins, Epidemiology, and Impact. Clinical Infectious Diseases, 36, Supplement 1: S11 (2003).
6. C. Buke, M. Hosgor-Limoncu, S. Ermertcan, M. Ciceklioglu, M. Tuncel, T. Kose et al., Journal of Infection, 51, No. 2: 135 (2005).
7. S. Schwarz, A. Loeffler, and K. Kadlec, Vet Dermatol., 28, No. 1: 82-e19 (2017); doi:10.1111/vde.12362.
8. A. L. Bisno and D. Stevens, Streptococcus pyogenes. Principles and Practice of Infectious Diseases, 2: 1786 (1995).
9. T. L. Lamagni, J. Darenberg, B. Luca-Harari, T. Siljander, A. Efstratiou, V. Henriques-Normark et al., Journal of Clinical Microbiology, 2359, No. 7: 46 (2008).
10. T. L. Lamagni, S. Neal, C. Keshishian, N. Alhaddad, R. George, G. Duckworth et al., Emerging Infectious Diseases, 14, No. 2: 202 (2008).
11. T. Lamagni, A. Efstratiou, J. Vuopio-Varkila, A. Jasir, and C. Schalen, European Communicable Disease Bulletin, 10, No. 9: 179 (2005).
12. R. K. Holmes, M. G. Jobling, and T. D. Connell, Handbook of Natural Toxins. Vol. 8. Bacterial Toxins and Virulence Factors in Disease (Eds. J. Moss, B. Iglewski, M. Vaughn, and A. T. Tu) (New York: Marcel Dekker: 1995), p. 225.
13. A. Y. Peleg, H. Seifert, and D. L. Paterson, Clinical Microbiology Reviews, 21, No. 3: 538 (2008).
14. G. M. Eliopoulos, L. L. Maragakis, and T. M. Perl, Clinical Infectious Diseases, 46, No. 8: 1254 (2008).
15. P.-R. Hsueh, C.-Y. Liu, and K.-T. Luh, Emerging Infectious Diseases, 8, No. 2: 132 (2002).
16. Morbidity and Mortality Report Weekly, 53, No. 45: 1063 (2004).
17. F. Perez, A. M. Hujer, K. M. Hujer, B. K. Decker, P. N. Rather, and R. A. Bonomo, Antimicrobial Agents and Chemotherapy, 51, No. 10: 3471 (2007).
18. E. Oldfield and X. Feng, Trends in Pharmacological Sciences, 35, No. 12: 664 (2014).
19. R. Y. Pelgrift and A. J. Friedman, Advanced Drug Delivery Reviews, 65, Nos. 13–14: 1803 (2013); doi: 10.1016/j.addr.2013.07.011.
20. M. Saadatmand, M. Yazdanshenas, S. Rezaei Zarchi, B. Yosefi Talori, and M. Negahdari, Laboratory Journal, 6, No. 1: 57 (2012).
21. B. Negahdari, M. H. Shirazi, M. Kadkhodazadeh, Z. V. Malekshahi, S. Sadeghi, S. Hajikhani, and M. Rahmati, International Journal of Health Studies, 2, Iss. 1: 20 (2016); http://dx.doi.org/10.22100/ijhs.v2i1.82.
22. G. Li, J. Zhai, D. Li, X. Fang, H. Jiang, Q. Dong et al., Journal of Materials Chemistry, 20, No. 41: 9215 (2010).
23. H. N. Abdelhamid and H.-F. Wu, Journal of Materials Chemistry, 1, No. 32: 3950 (2013).
24. H. N. Abdelhamid and H.-F. Wu, TrAC Trends in Analytical Chemistry, 65: 30 (2015).
25. B.-S. Wu, H. N. Abdelhamid, and H.-F. Wu, RSC Advances, 4, No. 8: 3722 (2014).
26. H. N. Abdelhamid, M. S. Khan, and H.-F. Wu, RSC Advances, 4, No. 91: 50035 (2014).
27. A. K. Suresh, D. A. Pelletier, and M. J. Doktycz, Nanoscale, 5, No. 2: 463 (2013).
28. The Chemistry of Nanomaterials: Synthesis, Properties and Applications (Eds. C. N. R. Rao, A. Muller, and A. K. Cheetham) (Hoboken, NJ, USA: John Wiley & Sons: 2006); https://www.wiley.com/en-us/9783527306862.
29. P. Lakshmi, K. S. Raj, and K. Ramachandran, Crystal Research and Technology, 44, No. 2: 153 (2009).
30. X. L. Sun and G. Y. Hong, Chinese Chemical Letters, 12, No. 2: 187 (2001).
31. M. Moritz and M. Geszke-Moritz, Chemical Engineering Journal, 228: 596 (2013).
32. B. Aydin Sevinc and L. Hanley, Journal of Biomedical Materials Research. Pt. B: Applied Biomaterials, 94, No. 1: 22 (2010).
33. C. Malarkodi and G. Annadurai, Applied Nanoscience, 3, No. 5: 389 (2013).
34. K. R. Raghupathi, R. T. Koodali, and A. C. Manna, Langmuir, 27, No. 7: 4020 (2011).
35. H. Dehghani, S. Khoramnejadian, M. Mahboubi, M. Sasani, S. Ghobadzadeh, S. M. Haghighi et al., International Journal of Electrochemical Science, 11, No. 3: 2029 (2016).
36. R. Bandaranayake, G. Wen, J. Lin, H. Jiang, and C. Sorensen, Applied Physics Letters, 67, No. 6: 831 (1995).
37. X. Cheng, M. Filiaggi, and S. G. Roscoe, Biomaterials, 25, No. 23: 5395 (2004).
38. J. S. Griffith, The Theory of Transition-Metal Ions (London–New York: Cambridge University Press: 1961).
39. Antimicrobial Susceptibility Testing Protocols (Eds. R. Schwalbe, L. SteeleMoore, and A. C. Goodwin) (Boca Raton: CRC Press: 2007); https://doi.org/10.1201/9781420014495.
40. Methods in Practical Laboratory Bacteriology (Ed. H. Chart) (Boca Raton, Fla.: CRC Press–Taylor & Francis: 1994).
41. R. M. Atlas, Handbook of Microbiological Media (Boca Raton: CRC Press: 2010).
42. S. B. Levy and B. Marshall, Nature Medicine, 10: S122-S9 (2004).
43. F. C. Tenover and J. M. Hughes, Jama, 275, No. 4: 300 (1996).
44. R. M. Anderson, R. M. May, and B. Anderson, Infectious Diseases of Humans: Dynamics and Control. Vol. 28 (Oxford: Wiley Online Library: 1991).
45. K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman et al., Nature, 451: No. 7181: 990 (2008).
46. D. N. Gilbert, R. C. Moellering, and M. A. Sande, The Sanford Guide to Antimicrobial Therapy (USA: Antimicrobial Therapy Inc.: 2003).
47. A. J. Alanis, Archives of Medical Research, 36, No. 6: 697 (2005).
48. L. D. Hogberg, A. Heddini, and O. Cars, Trends in Pharmacological Sciences, 31, No. 11: 509 (2010).
49. S. Luqman, G. R. Dwivedi, M. P. Darokar, A. Kalra, and S. P. Khanuja, Altern. Ther. Health Med., 13, No. 5: 54 (2017).
50. C. T. Walsh, Chem. Bio. Chem., 3: 124 (2002).
51. C. Walsh, Nature Reviews Microbiology, 1, No. 1: 65 (2003).
52. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic, International Journal of Nanomedicine, 7: 6003 (2012).
53. S. Kang, M. Pinault, L. D. Pfefferle, and M. Elimelech, Langmuir, 23, No. 17: 8670-3 (2007).
54. M. Rai, A. Yadav, and A. Gade, Biotechnology Advances, 27, No. 1: 76 (2009).
55. J. T. Seil and T. J. Webster, Int. J. Nanomedicine, 7: 2767 (2012).
56. S. Ganguly, S. Das, and S. G. Dastidar, Distinct Antimicrobial Effects of Synthesized ZnS Nanoparticles Against Twelve Pathogenic Bacterial Strains (Open Science Repository Chemistry: 2013); doi: 10.7392/Chemistry.70081948.
57. L. Argueta-Figueroa, O. Martinez-Alvarez, J. Santos-Cruz, R. GarciaContreras, L. Acosta-Torres, J. de la Fuente-Hernandez, and M. C. ArenasArrocena, Materials Science and Engineering: C, 76, No. 1: 1305 (2017).
58. M. Lv, S. Su, Y. He, Q. Huang, W. Hu, D. Li et al., Advanced Materials, 22, No. 48: 5463 (2010).
59. Nano-Antimicrobials: Progress and Prospects (Eds. N. Cioffi and M. Rai) (Berlin–Heidelberg: Springer Verlag: 2012).
60. A. J. Huh and Y. J. Kwon, Journal of Controlled Release, 156, No. 2: 128 (2011).
61. Eds. A. Mieshkov, L. Hrebenyk, and L. Sukhodub, 2015 E-Health and Bioengineering Conference (EHB) (19–21 Nov. 2015, Iasi, Romania) (Red Hook, NY, USA: IEEE Xplore: 2015); DOI: 10.1109/EHB.2015.7391391.
62. P. Suyana, S. N. Kumar, B. D. Kumar, B. N. Nair, S. C. Pillai, A. P. Mohamed et al., RSC Advances, 4, No. 17: 8439 (2014).
63. C. Chaliha, B. Nath, P. K. Verma, and E. Kalita, Arabian Journal of Chemistry, 12, No. 4: 515 (2016); DOI: 10.1016/j.arabjc.2016.05.002.
64. P. C. Menaga, G. P. Dharsini, and V. Rama, The International Journal of Science and Technology, 2, No. 10: 72 (2014).
65. P. R. Singh, P. K. Sharma, M. Kumar, R. Dutta, S. Sundaram, and A. C. Pandey, Journal of Materials Chemistry B, 2, No. 5: 522 (2014).
66. D. Pathania, M. Kumari, and V. K. Gupta, Materials & Design, 87: 1056 (2015).
67. R. J. McLean and B. L. Kirkland, Nanomicrobiology: Physiological and Environmental Characteristics (Eds. L. L. Barton, D. A. Bazylinski, and H. Xu) (New York, NY: Springer: 2014), p. 1; https://doi.org/10.1007/978-1- 4939-1667-2_1
68. K. K. Jain, The Handbook of Nanomedicine (New York: Springer Science+Business Media: 2012).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement