Issues

 / 

2020

 / 

vol. 18 / 

Issue 1

 



Download the full version of the article (in PDF format)

T. T. Alekseeva, N. V. Babkina, N. V. Iarova, O. M. Gorbatenko
«Influence of the Method of Obtaining Titanium-Containing Interpenetrating Polymer Meshes on the Kinetics of Their Formation, Viscoelastic and Thermophysical Properties When Varying the Ti-Component Content»
125–139 (2020)

PACS numbers: 61.41.+e, 62.40.+i, 64.70.pj, 81.07.Pr, 82.35.-x, 83.60.-a, 83.80.-k

There are synthesized two series of Ti-containing interpenetrating polymer networks (Ti-IPN\(_1\) and Ti-IPN\(_2\)) based on cross-linked polyurethane (PU), poly(hydroxyethyl methacrylate) (PHEMA) and Ti-containing component, which is obtained in different ways by varying the content of Ti component. Ti-containing copolymer based on both 2-hydroxyethyl methacrylate (HEMA) and Ti(OPr\(^i\))\(_4\) isopropoxide is used for formation of Ti-IPN\(_1\), and for formation Ti-IPN\(_2\) is used poly(titanium oxide) ((–TiO\(_2\)–)\(_n\)) synthesized in the environment of HEMA by sol–gel method. As found, the Ti-comonomer polymerization in Ti-IPN\(_1\) systems is 1.5–2 times faster, in contrast to the formation of Ti-containing PHEMA component in Ti-IPN\(_2\) systems due to the difference of the structure topology of the Ti component. In the formation of Ti-IPN\(_1\), a cross-linked PHEMA is formed, in which the sites of the cross-link are fragments (–TiO\(_2\)–), and at the formation of Ti-IPN\(_2\), hybrid PHEMA/(–TiO\(_2\)-)\(_n\) are formed in the presence of poly(titanium oxide) of the branched three-dimensional structure. Kinetic factors influence on the viscoelastic and thermophysical properties of investigated Ti-containing IPNs. As established, both series of Ti-IPN\(_s\) demonstrate increase of the cross-link density in the polymer systems with increasing of the Ti-component content. However, the rapid polymerization of Ti-comonomer in the case of Ti-IPN\(_1\) formation leads to the form of more crosslinked Ti-containing PGEMA and blocking of the PU phase formation. Moreover, the slower polymerization of HEMA in the presence of poly(titanium oxide) during the formation of Ti-IPN\(_2\) leads to the formation of more bulky structures with the lower-density polymer network.

Keywords: polyurethane, polytitanoxide, interpenetrating polymer networks, kinetics, viscoelastic properties, thermophysical properties

https://doi.org/10.15407/nnn.18.01.125

References
1. U. Schubert, J. Mater. Chem., 15: 3701 (2005); 10.1039/B504269K.
2. F. Wang, Z. Luo, S., Q. Qing, and R. Li, J. Alloys and Compounds, 486: 521 (2009); 10.1016/j.jallcom.2009.06.195.
3. M. Xiong, Sh. Zhou, B. You, and G. Gu, J. Polymer Science. B: Polymer Physics, 42: 3682 (2004); https://doi.org/10.1002/polb.20218.
4. Y. S. Lipatov and T. T. Alekseeva, Phase-Separated Interpenetrating Polymer Networks, Adv. Polym. Sci., 208: 1 (2007).
5. Y. S. Lipatov and T. T. Alekseeva, IPNs Around the World Science and Engineering (1997), p. 72.
6. Y. S. Lipatov, T. T. Alekseeva, V. F. Rosovitsky, and N. V. Babkina, Polymer Networks Blends, 4, No. 1: 9 (1994).
7. S. R. Jin, J. M. Widmaier, and G. C. Meyer, Polym. for Adv. Technol. (Ed. M. Lewin) (New York: VCH: 1988).
8. G. Bonilla, M. Martinez, A. M. Mendoza, and J.-M. Widmaier, Eur. Polym. J., 42: 2977 (2006); https://doi.org/10.1016/j.eurpolymj.2006.07.011. 9. J. M. Widmaier and G. Bonilla, Polym. Adv. Technol., 17: 634 (2006); https://doi:10.1002/pat.
10. H. Kaddami, J. F. Gerard, P. Hajji, and J. P. Pascault, J. Appl. Polym. Sci., 73: 2701 (1999); https://doi.org/10.1002/(SICI)1097- 4628(19990923)73:13<2701::AID-APP18>3.0.CO;2-F.
11. H. Kaddami, J. P. Pascault, and J. F. Gerard, Polym. Eng. Sci., 44: 1231 (2004); https://doi.org/10.1002/pen.20118.
12. S. Trabelsi, A. Janke, R. Hassler, N. E. Zafeiropoulos, G. Fornasieri, S. Bocchini, L. Rozes, M. Stamm, J.F. Gerard, and C. Sanchez, Macromolecules, 38: 6068 (2005); https://doi.org/10.1021/ma0507239.
13. T. T. Alekseeva, Yu. P. Gomza, I. S. Martyinyuk, V. V. Klepko, and S. D. Nesin, Reports of the National Academy of Sciences of Ukraine, No. 9: 136 (2013) (in Russian); https://doi.org/10.1021/ma0507239.
14. T. V. Tsebrienko, Syntez, Struktura ta Vlastyvosti Vzayemopronyknykh Polimernykh Sitok, Shcho Mistyat Politytanoksyd, Otrymanyy Zol–Gel Metodom [Synthesis, Structure and Properties of Interpenetrating Polymer Networks Containing Poly(Titanium Oxide) Obtained by Sol–Gel Method] (Thesis of Disser. for Ph. D. Chem. Sci.) (Kyiv: Institute of Macromolecular Chemistry, N.A.S.U.: 2017) (in Ukrainian).
15. G. P. Gladyishev and V. A. Popov, Radikalnaya Polimerizatsiya pri Glubokikh Stepenyakh Prevrashcheniya [Radical Polymerization at Deep Degrees of Transformation] (Moscow: Science: 1974) (in Russian).
16. L. E. Nilsen, Mechanical Properties of Polymers and Composites (New York: Marcel Dekker: 1974), vol. 1.
17. K. P. Menard, Dynamic Mechanical Analysis. A Practical Introduction (CRC Press–Taylor & Francis Group: 2008).
18. S. Li, A. Shah, A. J. Hsieh, R. Haghighat, S. Praveen, I. Mukherjee, E. Wei, Z. Zhang, and Y. Wei, Polymer, 48: 3982 (2007); https://doi.org/10.1016/j.polymer.2007.05.025.
19. C.-S. Wu, J. of Appl. Polym. Sci., 92: 1749 (2004); https://doi.org/10.1002/app.20135.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement