Issues

 / 

2020

 / 

vol. 18 / 

Issue 1

 



Download the full version of the article (in PDF format)

Ya. I. Matvienko, O. D. Rud, S. S. Polishchuk, V. V. Trachevski, O. M. Fesenko, A. D. Yaremkevych, O. Yu. Khyzhun
«Spectroscopic Studies of Changes in the Structural–Phase State of Elementary Powders of the Al–Cu/C System During Mechanical Activation Processing»
077–088 (2020)

PACS numbers: 62.20.Qp, 62.23.Kn, 81.15.Jj, 81.40.Pq, 81.65.Lp, 81.70.Jb, 82.80.-d

The evolution of both structure and phase composition of the Al–33 wt.% Cu and Al–80 wt.% Cu powders with additives of 5 wt.% of graphite during their mechanical alloying and annealing are examined. The Al–Cu/C powders after corresponding treatments are studied by x-ray diffraction analysis, nuclear magnetic resonance (NMR), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The milling of the powder for 1 to 8 hours leads to the change of the graphite-additives’ crystalline structure into amorphous one. As shown, the mechanical alloying of the powders results in the formation of disordered Al\(_4\)Ñu\(_9\)-phase (structural type A2) based on b.c.c. lattice. Moreover, milling of the powder with eutectic Al–33 wt.% Cu/5 wt.% C composition for 2 to 8 hours leads to the formation a non-stoichiometric Al\(_2\)Ñu\(_{1-x}\) phase ( 0.012‹ x ‹ 0.059) besides b.c.c.-lattice-based Al\(_4\)Ñu\(_9\)-phase. Annealing of the Al–33 wt.% Cu/5 wt.% C and Al–80 wt.% Cu/5 wt.% C powders at 500\(^\circ\)C for 2 hours results in the formation of phase compositions close to equilibrium (Al + Al2Cu phase and ordered \(\gamma_2\)-Al\(_4\)Ñu\(_9\) phase, respectively) as well as in the reaction between aluminium and carbon with the formation of carbide Al\(_4\)Ñu\(_3\).

Keywords: Al–Cu/C powders, mechanical alloying, amorphous graphite, Al\(_4\)Ñu\(_9\) phase, Al2Cu phase, carbide Al\(_4\)Ñu\(_3\)

https://doi.org/10.15407/nnn.18.01.077

References
1. R. Casati and M. Vedani, Metals, 4: 65 (2014); https://doi.org/10.3390/met4010065.
2. H. Faleh, M. Noori, and ?. Florin, Advanced Materials Research, 1128: 134 (2015); http://doi.org/10.4028/www.scientific.net/AMR.1128.134.
3. F. H. Latief and E. M. Sherif, Journal of Infustrial and Engeneering Chemistry, 18: 2129 (2012); http://doi.org/10.1016/j.jiec.2012.06.007.
4. J. L. Hernandez, J. J. Cruz, C. Gomez, O. Coreno, and R. Martinez-Sanchez, Materials Transactions, 5: 1120 (2010); http://doi.org/10.2320/matertrans.M2009398.
5. J. Mendoza-Duartea, I. Estrada-Guel, F. Robles-Hernandez, C. CarrenoGallardo, C. Lopez-Melendez, and R. Martinez-Sanchez, Materials Research, 19, Suppl. 1: 13 (2016); http://dx.doi.org/10.1590/1980-5373-MR-2015- 0625.
6. Ya. Matvienko, A. Rud, S. Polishchuk, Yu. Zagorodniy, N. Rud, and V. Trachevski, Applied Nanoscience (2019); https://doi.org/10.1007/s13204- 019-01086-2.
7. Ya. I. Matvienko, A. D. Rud, S. S. Polishchuk, N. D. Rud, S. O. Demchenkov, and A. Yu. Klepko, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1519 (2019); https://doi.org/10.15407/mfint.41.11.1519.
8. Ya. I. Matvienko, S. S. Polishchuk, A. D. Rud, T. M. Mika, V. I. Bondarchuk, and S. Î. Demchenkov, Metallofiz. NoveishieTekhnol., 41, No. 8: 981 (2019); https://doi.org/10.15407/mfint.41.08.0981.
9. A. N. Streletskii, I. V. Kolbanev, A. B. Borunova, A. V. Leonov, and P. Yu. Butyagin, Colloid Journal, 66: 729 (2004); http://doi.org/1061- 933X/04/6606-0709.
10. K. Kim, D. Kim, K. Park, M. Cho, S. Cho, and H. Kwon, Materials, 12: 1546 (2019); https://doi.org/10.3390/ma12091546.
11. M. A. Shaik and B. R. Golla, J. Mater. Sci. Metals. (2018); https://doi.org/10.1007/s10853-018-2638-0.
12. F. Li, K. N. Ishihara, and P. H. Singu, Metall. Trans. A, 22: 2849 (1991); https://doi.org/10.1007/BF02650245.
13. R. Besson, J. Kwon, L. Thuinet, M.-N. Avettand-Fenoel, and A. Legris, Phys. Rev. B, 90: 214104 (2014); https://doi.org/10.1103/PhysRevB.90.214104.
14. J. C. de Lima, D. M. Triches, V. H. F. dos Santos, and T. A. Grandi, J. Alloy. Compd., 282: 258 (1999); http://doi.org/10.1016/S0925-8388(98)00830-5.
15. I. Manna, P. P. Chattopadhyay, B. Chatterjee, and S. K. Pabi, J. Mater. Sci., 36: 1419 (2001); https://doi.org/10.1023/A:1017580226001.
16. D. Y. Ying and D. L. Zhang, J. Alloy. Compd., 311: 275 (2000); https://doi.org/10.1016/S0925-8388(00)01094-X.
17. J. Kwon, L. Thuinet, M.-N. Avettand-Fenoel, A. Legris, and R. Besson, Intermetallics, 46: 250 (2014); https://doi.org/10.1016/j.intermet.2013.11.023.
18. P. Butyagin and A. Streletskii, Phys. Solid State, 47: 856 (2005); https://doi.org/10.1134/1.1924845.
19. G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, and O. Posudievsky, Nanoscale Research Letters, 9: 263 (2014); http://www.nanoscalereslett.com/content/9/1/263.
20. S. Rajagopal, D. Nataraj, O. Y. Khyzhun, Y. Djaoued, J. Robichaud, K. Senthil, and D. Mangalaraj, Cryst. Eng. Comm., 13: 2358 (2011); https://doi.org/10.1039/C0CE00303D.
21. O. Y. Khyzhun, E. A. Zhurakovsky, A. K. Sinelnichenko, and V. A. Kolyagin, J. Electron Spectrosc. Relat. Phenom., 82: 179 (1996); https://doi.org/10.1016/S0368-2048(96)03057-5.
22. K. J. D. MacKenzie and M. E. Smith, Multinuclear Solid State NMR of Inorganic Materials (Oxford: Pergamon/Elsevier: 2002), vol. 6.
23. D. Dudina, O. Lomovsky, K. Valeev , S. Tikhov, N. Boldyrev et al., J. Alloy. Compd., 629: 343 (2015); https://doi.org/10.1016/j.jallcom.2014.12.120.
24. S. Tikhov, T. Minyukova, K. Valeev, S. Cherepanova, A. Salanov, V. Kaichev et al., RSC Advances, 67: 42443 (2017); https://doi.org/10.1039/C7RA06672D.
25. E. H. Kisi and J. D. Browne, Acta Crystallographica. Sec. B, 47, Iss. 6: 835- 843 (1991); https://doi.org/10.1107/S0108768191005694.
26. F. Haarmann, M. Armbruster, and Y. Grin, Chem. Mater., 19: 1147 (2007); https://doi.org/10.1021/cm062313k(2007).
27. T. Bastow and S. Celotto, Acta Materialia, 51: 4621 (2003); https://doi.org/10.1016/S1359-6454(03)00299-4.
28. Ñ. Moran, R. Marti, S. Hayes, and K. Walton, Carbon, 114: 482 (2017); https://doi.org/10.1016/j.carbon.2016.11.083.
29. O. Fesenko, G. Dovbeshko, A. Dementjev, R. Karpicz, T. Kaplas, and Yu. Svirko, Nanoscale Research Letters, 10: 163 (2015); https://doi.org/10.1186/s11671-015-0869-4.
30. N. Larionova, R. Nikonova, and V. Ladyanov, Advanced Powder Technology, 29, No. 2: 399 (2018); http://doi.org/10.1016/j.apt.2017.11.027.
31. A. Rud and A. Lakhnik, International Journal of Hydrogen Energy, 37: 4179 (2012); https://doi.org/10.1016/j.ijhydene.2011.11.123.
32. J. L. Kennedy, T. D. Drysdale, and D. H. Gregory, Green Chemistry, 17, No. 1: 285 (2015) http://doi.org/10.1039/C4GC01277A.
33. M. Bahrami, G. Taton, V. Condra, L. Salvagnac, C. Tenailleau, P. Alphonse, and C. Rossi, Propellants Explos. Pyrotech., 39: 365 (2014); http://doi.org/10.1002/prep.201300080.
34. Practical Surface Analysis: Auger and X-Ray Photoelectron Spectroscopy (2nd Ed.) (Eds. D. Briggs and P. M. Seach) (Chichester: John Willey & Sons Ltd.: 1990), vol. 1.
35. T. Czeppe, E. Korznikova, P. Ozga, M. Wrobel, L. Litynska-Dobrzynska, G. F. Korznikova et al., Acta Physica Polonica A, 126, No. 4: 921 (2014); https://doi.org 10.12693/APhysPolA.126.921.
36. A. Zameshin, M. Popov, V. Medvedev, S. Perfilov, R. Lomakin, S. Buga, V. Denisov, A. Kirichenko et al., Appl. Phys. A, 107: 863 (2012); https://doi.org/10.1007/s00339-012-6805-x.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement