Issues

 / 

2020

 / 

vol. 18 / 

Issue 1

 



Download the full version of the article (in PDF format)

H. A. Ilchuk, E. O. Zmiiovska, R. Y. Petrus, I. V. Petrovich, I. V. Semkiv, A. I. Kashuba
«Dynamics of Change of Electronic and Optical Properties of Substitutional Solid CdSe\(_{1-x}\)S\(_x\) Solutions»
059–075 (2020)

PACS numbers: 71.15.Dx, 71.15.Mb, 71.20.Nr, 73.20.At, 73.21.Ac, 78.20.Ci, 78.70.En

The results of first-principle studies of the electronic and optical properties of solid CdSe\(_{1-x}\)S\(_x\) solutions (x=0.125–0.875) are presented. The electronic energy spectrum and density of states of solid CdSe\(_{1-x}\)S\(_x\) solutions with a step \(\triangle\)õ=0.125 are calculated. The concentration dependence of the band-gap width is established. The dynamics of changes of basic optical constants (dielectric constant, refractive index, and reflection coefficient) as functions of sulphur content is determined. The results of experimental investigations of thin CdSe\(_{1-x}\)S\(_x\) films (x=0.30\(\pm\)1) are presented. Thin films are obtained by chemical deposition on quartz substrates. The analysis of obtained films and morphology of surfaces is performed using both x-ray fluorescence and scanning electron microscopy. The dependence of band gap on the deposition time for thin films is established. Both the average crystallite size and the dislocation density of the thin CdSeS film are calculated.

Keywords: thin films, electronic band-energy structure, electron density of states, optical constants

https://doi.org/10.15407/nnn.18.01.059

References
1. R. Banerjee, R. Jayakrishnan, R. Banerjee, and P. Ayyub, J. Phys.: Condens. Matter, 12, No. 50: 10647 (2000); https://doi.org/10.1088/0953- 8984/12/50/325.
2. W. Su-Huai, S.B. Zhang, and A. Zunger, J. Appl. Phys., 87, No. 3: 1 (2000); https://doi.org/10.1063/1.372014.
3. S. Chun, Y. Jung, J. Kim, and D. Kim, Journal of Crystal Growth, 326, No. 1: 152 (2011); https://doi.org/10.1016/j.jcrysgro.2011.01.086.
4. M. Zafar, M. Shakil, Sh. Ahmed, M. Raza-ur-rehman Hashmi, M. A. Choudhary, and Naeem-ur-Rehman, Solar Energy, 158, 63 (2017); https://doi.org/10.1016/j.solener.2017.09.034.
5. R. Yu. Petrus, H. A. Ilchuk, A. I. Kashuba, I. V. Semkiv, and E. O. Zmiiovska, Optics and Spectroscopy, 126, No. 3: 220 (2019); https://doi.org/10.1134/S0030400X19030160.
6. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, No. 18: 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.
7. W. Kohn and L. J. Sham, Phys. Rev., 140: A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133.
8. D. Vanderbilt, Phys. Rev. B, 41, No. 11: 7892 (1990); https://doi.org/10.1103/PhysRevB.41.7892.
9. A. V. Franiv, A. I. Kashuba, O. V. Bovgyra, and O. V. Futey, Ukr. J. Phys., 62, No. 8: 679 (2017); https://doi.org/10.15407/ujpe62.08.0679.
10. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13, No. 12: 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188.
11. B. Andriyevsky, A. I. Kashuba, I. M. Kunyo, K. Dorywalski, I. V. Semkiv, I. V. Karpa, V. B. Stakhura, L. Andriyevska, J. Piekarski, and M. Piasecki, Journal of Electronic Materials, 48, No. 9: 5586 (2019); https://doi.org/10.1007/s11664-019-07404-2.
12. I. V. Semkiv, B. A. Lukiyanets, H. A. Ilchuk, R. Yu. Petrus, A. I. Kashuba, and M. V. Chekaylo, Journal of Nano- and Electronic Physics, 8, No. 1: 01011-1 (2016); https://doi.org/10.21272/jnep.8(1).01011.
13. A. I. Kashuba, M. Piasecki, O. V. Bovgyra, V. Yo. Stadnyk, P. Demchenko, A. Fedorchuk, A. V. Franiv, and B. Andriyevsky, Acta Phys. Pol. A, 133, No. 1: 68 (2018); https://doi.org/10.12693/APhysPolA.133.68.
14. I. M. Kunyo, A. I. Kashuba, I. V. Karpa, V. B. Stakhura, S. A. Sveleba, I. M. Katerynchuk, I. S. Holyns’kyi, T. I. Vozniak, and M. V. Kovalenko, Journal of Physical Studies, 22, No. 3: 3301-1 (2018); https://doi.org/10.30970/jps.22.3301.
15. H. A. Ilchuk, R. Yu. Petrus, A. I. Kashuba, I. V. Semkiv, and E. O. Zmiiovska, Nanosistemi, Nanomateriali, Nanotehnologii, 16, No. 3: 519 (2018) (in Ukrainian).
16. I. V. Semkiv, H. A. Ilchuk, A. I. Kashuba, R. Yu. Petrus, and V. V. Kusnezh, Journal of Nano- and Electronic Physics, 8, No. 3: 03005-1 (2016); https://doi.org/10.21272/jnep.8(3).03005.
17. L. Vegard, Zeitschrift fur Physik, 5, No. 1: 17 (1921); https://doi.org/10.1007/BF01349680.
18. R. Yu. Petrus, H. A. Ilchuk, V. M. Sklyarchuk, A. I. Kashuba, I. V. Semkiv, and E. O. Zmiiovska, Journal of Nano- and Electronic Physics, 10, No. 6: 06042-1 (2018); https://doi.org/10.21272/jnep.10(6).06042.
19. R. R. Guminilovych, P. I. Shapoval, I. I. Yatchyshyn, G. A. Il’chuk, and V. V. Kusnezh, Russian Journal of Applied Chemistry, 86, No. 5: 696 (2013); https://doi.org/10.1134/S1070427213050157.
20. J. Gutowski, K. Sebald, and T. Voss, CdSxSe1 x : Band Structure, Bowing Parameter (Berlin–Heidelberg: Springer-Verlag: 2008).
21. J. C. Woolley, A. G. Thompson, and M. Rubinstein, Phys. Rev. Lett., 15, No. 19: 670 (1965); https://doi.org/10.1103/PhysRevLett.15.768.
22. J. E. Bernard and A. Zunger, Phys. Rev. B, 36, No. 6: 3199 (1987); https://doi.org/10.1103/physrevb.36.3199.
23. M. Grundmann, The Physics of Semiconductors (Berlin–Heidelberg: Springer: 2006).
24. P. E. Schmid, Phys. Rev. B, 23, No. 10: 5531 (1981); https://doi.org/10.1103/PhysRevB.23.5531.
25. M. Bugajski and W. Lewandowski, J. Appl. Phys., 57, No. 2: 521 (1985); https://doi.org/10.1063/1.334786.
26. R. J. Van Overstraeten and R. P. Mertens, Solid-State Electronics, 30, No. 11: 1077 (1987); https://doi.org/10.1016/0038-1101(87)90070-0.
27. Z. M. Gibbs, A. LaLonde, and G. J. Snyder, New Journal of Physics, 15: 75020.35 (2013); https://doi.org/10.1088/1367-2630/15/7/075020.
28. G. Il’chuk, V. Kusnezh, P. Shapowal, V. Ukrainets’, S. Lukashuk, A. Kostruba, and R. Serkiz, Journal of Physical Studies, 13, No. 2: 2702-1 (2009).
29. P. Scherrer, Gottinger Nachrichten Math. Phys., 2: 98 (1918).
30. S. Prabahar and M. Dhanam, Journal of Crystal Growth, 285: 41 (2005).
31. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter, 21: 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement