Issues

 / 

2020

 / 

vol. 18 / 

Issue 1

 



Download the full version of the article (in PDF format)

M. Ye. Kornienko, A. P. Naumenko, L. M. Kulikov
«Observation of Diamond- and Graphite-Like Nanostructures in the Raman Spectra of MoS\(_2\)–C Nanoheterostructures»
015–040 (2020)

PACS numbers: 61.46.Hk, 63.22.Np, 68.65.Ac, 78.30.-j, 81.05.U-, 82.80.Gk

A comparative study of the Raman spectra is carried out upon the excitation by laser radiation with \(\lambda_L\)=488 nm and 632.8 nm of micron particles of the natural layered molybdenum disulphide 2H-MoS\(_2\) and new nanoheterostructures (NHS) MoS\(_2\)–C obtained by the modified method of chemical vapour deposition (CVD) in the form of graphene-like MoS\(_2\) nanoparticles containing 0.5 and 1.0 wt.% of carbon. The existence of carbon impurities in micron particles of the natural MoS\(_2\) is shown, and this is manifested in the existence in their Raman spectra characteristic vibrational bands of the graphite-like and diamond-like structures. A detailed numerical analysis of the shape of the observed Raman bands, D and G, of the MoS\(_2\)–C NHSs, including their decomposition into spectral components, as well as a comparison with the reference spectra of detonation nanodiamonds (~ 5 nm) and disordered graphite, reveal the presence of vibrational bands of graphite-like (1335–1680 \(cm^{-1}\)) and diamond-like (1180–1319 \(cm^{-1}\)) structures. The complication of the spectra of these structures with the appearance of additional spectral components at ~1480 \(cm^{-1}\) and 1240–1260 \(cm^{-1}\) because of the doubling of the MoS\(_2\) unit cell sizes is analysed. All observed spectral components of the MoS\(_2\) and carbon nanostructures are identified. To reliably separate the close vibrational bands of graphite-like structures, G(k), at the boundaries of the Brillouin zone (BZ) and diamond-like structures, D, a new methodology is used; when the sizes are decreased and there is disordering of the diamond and graphite-like structures, the Raman shifts of D-bands decrease, but the Raman shifts of G(k)-bands increase. As shown, the Raman shifts of 1301–1309 \(cm^{-1}\) D-bands of diamond-like nanostructures are independent on \(\lambda_L\), in contrast to the Raman shift dispersion for G(k)-bands. For the first time, a significant influence of resonance radiation of 632.8 nm on the structure and properties of the studied MoS\(_2\)–C NHSs is established. This is manifested in the ordering of the diamond-like and graphite-like structures and strong changes in the intensity of fundamental vibrational bands \(\nu_1\) and \(\nu_3\) of MoS\(_2\), observation of lines of acoustic vibrations and anomalous amplification of overtone bands and total tones as well as a strong increase in broadband background. Strengthening of the D-bands of the diamond-like structure and the ordering of the graphite structure with increasing carbon content in MoS\(_2\)–C NHSs are established.

Keywords: nanoheterostructures, molybdenum disulphide, carbon, Raman spectra, D- and G-bands, vibrational band structure, diamond-like and graphite-like nanostructures

https://doi.org/10.15407/nnn.18.01.015

References
1. M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L.Zhang, and A. Z. Moshfeg, Nanoscale Horiz., 3, No. 3: 90 (2018); https://doi.org/ 10.1039/c7nh00137a.
2. J. Ping, Z. Fan, M. Sindoro, Y. Ying, and H. Zhang, Adv. Funct. Mater.: 1605817 (2017); https://doi.org/10.1002/adfm.201605817.
3. Q Lv and Ruitao Lv, Carbon, 145: 240 (2019); https://doi.org/10.1016/j.carbon.2019.01.008.
4. F. Banhart and P. M. Ajayan, Nature, 382: 433 (1996); https://doi.org/10.1038/382433a0.
5. A. Krueger, Carbon Materials and Nanotechnology (Weinheim: Wiley-VCH Verlag GmbH: 2010); https://doi.org/10.1002/9783527629602.ch7.
6. V. D .Blank, V. N. Denisov, A. Zakhidov, A. N. Kirichenko et al., Rossiyskiy Khimicheskiy Zhurnal [Rusian Chemical Journal], 50, No. 1: 96 (2006) (in Russian).
7. N. Å. Kornienko, Visnyk Kyivskogo Universytetu [Kyiv University Bulletin], 3: 489 (2006) (in Ukrainian).
8. N. E. Kornienko, N. P. Kulish, S. A. Alekseev, O. P. Dmitrenko, and E. L. Pavlenko, Optics and Spectroscopy, 109, No. 5: 742 (2010); https://doi.org/10.1134/S0030400X10110147.
9. M. Kornienko and A. Naumenko, Ukr. J. Phys., 59, No. 3: 339 (2014); doi: 10.15407/ujpe58.02.0151.
10. N. E. Kornieko and A. P. Naumenko, Chemical Functionalization of Carbon Nanomaterials: Chemistry and Application (Eds. V. K. Thakur and M. K. Thakur) (Boca Raton–London–New York: CRC Press: 2015), ð. 103– 145, 1077.
11. V. V. Sobolev and V. V. Nemoshkalenko, Metody Vychislitelnoy Fiziki v Teorii Tverdogo Tela [Methods of Computational Physics in the Theory of Solids] (Kiev: Naukova Dumka: 1990) (in Russian).
12. L. Akselrud and Y. Grin, J. Appl. Crystallogr., 47: 803 (2014); https://doi.org/10.1107/S1600576714001058.
13. R. M. A. Lieth and J. C. J. M. Terhell, Preparation and Crystal Growth of Materials with Layered Structures (Ed. R. M. A. Lieth) (Dordrecht–Boston: 1977), p. 141–223; https://doi.org/10.1007/978-94-017-2750-1_4.
14. I. G. Vasilyeva, I. P. Asanov, and L. M. Kulikov, J. Phys. Chem. C, 119, No. 40: 23259 (2015); doi/10.1021/acs.jpcc.5b07485.
15. A. Naumenko, L. Kulikov, and N. Konig, Ukr. J. Phós., 61, No. 6: 556 (2016); https://doi.org/10.15407/ujpe61.06.0561.
16. S. S. Bukalov, L. A. Leites, and R. R. Aysin, Advanced Materials Letters, 10, No. 8: 550 (2019); doi: 10.5185/amlett.2019.2268.
17. X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, Chem. Soc. Rev., arXiv:1502.00701v1 [cond-mat.mtrl-sci] 3 Feb 2015.
18. X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, Phys. Rev. B, 87: 115413 (2013); https://doi.org/10.1103/PhysRevB.87.115413.
19. G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B, 60, Nî. 4: 2883 (1999); https://doi.org/10.1103/PhysRevB.60.2883.
20. J. M. Chen and C. S. Wang, Solid State Communications, 14: 857 (1974); https://doi.org/10.1016/0038-1098(74)90150-1.
21. B. C. Windom, W. G. Sawyer, and D. W. Hahn, Tribol. Lett., 42: 301 (2011); https://doi.org/10.1007/s11249-011-9774-x.
22. Light Scattering in Solids II (Moscow: Mir: 1984) (in Russian).
23. A. P. Naumenko, N. E. Kornienko, V. M. Yashchuk, V. N. Bliznyuk, and S. Singamaneni, Ukr. J. Phys., 57, No. 2: 197 (2012).
24. A. P. Naumenko, N. E. Korniyenko, V. N. Yaschuk, S. Singamaneni, and V. N. Bliznyuk, Raman Spectroscopy for Nanomaterials Characterization (Ed. C. Kumar) (Berlin–Heidelberg: Springer-Verlag: 2012).
25. A. C. Ferrari and J. Robertson, Phys. Rev. B, 64: 075414 (2001); https://doi.org/10.1103/PhysRevB.64.075414.
26. A. C. Ferrari and J. Robertson, Phil. Trans. R. Soc. Lond. A, 362: 2477 (2004); https://doi.org/10.1098/rsta.2004.1452.
27. O. O. Mykhaylyk, Y. M. Solonin, D. N. Batchelder, and R. Brydson, J. Appl. Phys., 97: 074302 (2005); https://doi.org/10.1063/1.1868054.
28. P. H. Tan, S. Dimovski, and Y. Gogotsi, Phil. Trans. R. Soc. Lond. A, 362: 2289 (2004); https://www.jstor.org/stable/4488953.
29. Y. A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M. Terrones, and M. S. Dresselhaus, Chem. Phys. Lett., 398: 87 (2004); https://doi.org/10.1016/j.cplett.2004.09.024.
30. N. Å. Kornienko, À. D. Rud, and À. N. Kirichenko, Trudy 9 Mezdunarodnoy Konferentsii ‘Uglerod: Fundamentalnyye Problemy Nauki, Materialovedenie, Tekhnologiya’ [Materials of the 9-th International Conference ‘Carbon: Fundamental Problems, Materials Science, Technology’] (Moscow–Troitsk: 2014) (in Russian).
31. N. Å. Kornienko, A. D. Rud, and A. N. Kirichenko, Izvestiya VUZuzov. ‘Khimiya i Khimicheskaya Tekhnologiya’, 58, No. 5: 25 (2015) (in Russian).
32. J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejon, Phys. Rev. Lett., 92, No. 7: 075501 (2004); https://doi.org/10.1103/PhysRevLett.92.075501.
33. L. Gustavo de O. L. Cancado, Raman Spectroscopy of Nanographites (Setembro de 2006).
34. J. Robertson, Materials Science and Engineering: R, 37, Iss. 4–6: 129 (2002).
35. Light Scattering in Solids III. Resent Results (Moscow: Mir: 1985) (in Russian).
36. M. Levy, A. Albu-Yaron, R. Tenne, D. Feuermann, E. A. Katz, D. Babai, and J. M. Gordon, Isr. J. Chem., 50: 417 (2010); https://doi.org/10.1002/ijch.201000056.
37. M. Chhowalla and G. A. J. Amaratunga, Nature, 407: 164 (2000); https://doi.org/10.1038/35025020.
38. P. H. Tan, Y. M. Deng, and Q. Zhao, Phys. Rev. B, 58: 5435 (1998); https://doi.org/10.1103/PhysRevB.58.5435.
39. P. H. Tan, Y. Tang, and Y. M. Deng, F. Li, Y. L. Wei, and H. M. Cheng, Appl. Phys. Lett., 75, No. 11: 1524 (1999); https://doi.org/10.1063/1.124743.
40. P. H. Tan, L. An, L.Q. Liu, Z. X. Guo, R. Czerw, D. L. Carroll, P. M. Ajayan, N. Zhang, and H. L. Guo, Phys. Rev. B, 66: 245410 (2002); https://doi.org/10.1103/PhysRevB.66.245410.
41. J. A. Alonso, Structure and Properties of Atomic Nanoclusters (Spain: Universidad de Valladolid–Imperial College Press: 2012).
42. N. Å. Kornienko, Fizika Zhivogo [Physics of the Alive], 17, No. 1: 5 (2009) (in Ukrainian).
43. N. E. Korniyenko and N. Ð. Smolyar, Abstracs of XVI-th Int. SchoolSeminar ‘Spectroscopy of Molecules and Crystals’ (Sevastopol: 2003), p. 153.
44. N. Å. Kornienko, ‘Aktualnyye Problemy Fiziki Tverdogo Tela — FTT-2007’ [Actual Problems of Solid State Physics]: Proceedings of International Scientific Conference (Minsk: 2007), vol. 2, p. 174–176 (in Russian).
45. V. A. Karavanskii, N. N. Mel’nik, and T. N. Zavaritskaya, Journal of Experimental and Theoretical Physics Letters, 74, No. 3: 204 (2001); https://doi.org/10.1134/1.1410227.
46. T. N. Zavaritskaya, N. N. Mel’nik, and V. A. Karavanskii, Journal of Experimental and Theoretical Physics Letters., 79, No. 6: 340 (2004); https://doi.org/10.1134/1.1759410.
47. F. C. B. Maia, R. E. Samad, J. Bettini, R. O. Freitas, N. D. V. Junior, and N. M. Souza-Neto, Scientific Reports, 5: 11812 (2015); https://doi.org/10.1038/srep11812.
48. M. E. Kornienko, N. L. Sheiko, O. M. Kornienko, and T. Yu. Nikolaenko, Ukr. J. Phys., 58, No. 2: 151 (2013); https://doi.org/10.15407/ujpe58.02.
49. N. Å. Kornienko and A. N. Kirichenko, Izvestiya VUZov. ‘Khimiya i Khimicheskaya Tekhnologiya’, 59, No. 9: 50 (2016) (in Russian).
50. N. Å. Kornienko and A. N. Kirichenko, Materialy XXV S’ezda po Spektroskopii [Materials of the XXV Congress on Spectroscopy] (Moscow–Troitsk: 2016), p. 291, 292 (in Russian).
51. N. Å. Kornienko, V. I. Grygoruk, and À. N. Kornienko, Vestnik Tambovskogo Universiteta. Ser: Estestvennyye i Tekhnicheskie Nauki [Tambov University Bulletin. Natural and Technical Sciences], 15, No. 3: 953 (2010); https://doi.org /10.20310/1810-0198.
52. P. Rai, D. R. Mohapatra, K. S. Hazra, D. S. Misra, Jay Ghatak, and P. V. Satyam, Chem. Phys. Lett., 455: 83 (2008); https://doi.org/10.1016/j.cplett.2008.02.057.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement