vol. 17 / 

Issue 3


Download the full version of the article (in PDF format)

A. B. Melnick, V. Ya. Beloshapka, V. K. Soolshenko
«Modelling of Transition Metal High-Entropy Solid Solutions»
557–566 (2019)

PACS numbers: 05.10.Ln, 05.70.Ce, 64.75.Ef,, 81.30.Bx, 81.30.Fb, 82.60.Lf

The compositions of high-entropy alloys based on the elements Ni, Co, Fe, Cr, Mn, Ti, V, Cu, Al, Zr, and Si are evaluated with use of thermodynamic approach. Optimal compositions for alloys with minimal Gibbs energy are obtained, and influence of various factors on formation of the alloys is described. As shown, the most stable alloys are nonequiatomic. The compositions for alloys, which will be in the state of homogeneous multicomponent solid solutions, are determined.

Keywords: high-entropy alloys, solid solution, Gibbs energy, transition metals

1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun et al., Adv. Eng. Mater., 6: 299 (2004).
2. J. W. Yeh, JOM, 65: 1759 (2013).
3. Y. Zhang, T.T. Zuo, Z. Tang et al., Progress in Materials Science, 61: 1 (2014).
4. M. H Tsai and J. W. Yeh, Mater. Res. Lett., 2: 107 (2014).
5. D. B. Miracle and O. N. Senkov, Acta Mater., 122: 448 (2017).
6. M. C. Gao, C. Zhang, P. Gao, F. Zhang, L. Z. Ouyang, M. Widom, and J. A. Hawk, Curr. Opin. Solid State Mater. Sci., 21: 238 (2017).
7. Y. Tan, J. Li, S. Tang, J. Wang, and H. Kou, Journal of Alloys and Compounds, 742: 430 (2018).
8. F. Tian, L. K. Varga, N. Chen, L. Delczeg, and L. Vitos, Phys. Rev. B, 87: 075144 (2013).
9. F. Tian, L. Delczeg, N. Chen, L. K. Varga, J. Shen, and L. Vitos, Phys. Rev. B, 88: 085128 (2013).
10. P. Singh, A. V. Smirnov, and D. D. Johnson, Phys. Rev. B, 91: 224204 (2015).
11. D. Ma, B. Grabowski, F. K rmann, J. Neugebauer, and D. Raabe, Acta Mater., 100: 90 (2015).
12. C. Jiang and B. P. Uberuaga, Phys. Rev. Lett., 116: 105501 (2016).
13. M. C. Troparevsky, J. R. Morris, P. R. C. Kent, A. R. Lupini, G. M. Stocks, Phys. Rev. X, 5: 011041 (2015).
14. F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, CALPHAD, 5: 1 (2014).
15. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM, 64: 839 (2012).
16. O. N. Senkov, J. D. Miller, D. B. Miracle, and C. Woodward, Nature Comm., 6: 6529 (2015).
17. U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (Boca Raton: CRC Press: 2010).
18. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, Adv. Eng. Mater., 10: 534 (2008).
19. Y. Zhang, Z. P. Lu, S. G. Ma, P. K. Liaw, Z. Tang, Y. Q. Cheng et al., MRS Commun., 4: 57 (2014).
20. S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys., 109: 103505 (2011).
21. S. Fang, X. Xiao, L. Xia, W. Li, and Y. Dong, J. Non-Cryst. Solids, 321: 120 (2003).
22. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, Scripta Mater., 104: 53 (2015).
23. A. Takeuchi and A. Inoue, Sci. Eng. A, 304Ц306: 446 (2001).
24. A. B. Melnick and V. K. Soolshenko, Journal of Alloys and Compounds, 694: 223 (2017).
25. B. Cantor, I. Chang, P. Knight, and A. Vincent, Mater. Sci. Eng. A, 375Ц377: 213 (2004).
26. F. He, Z. Wang, Q. Wu, S. Niu, J. Li, J. Wang, and C. T. Liu, Scripta Materialia, 131: 42 (2017).
27. A. Takeuchi and A. Inoue, Materials Transactions, 41: 1372 (2000).
28. A. Takeuchi and A. Inoue, Materials Transactions, 46: 2817 (2005).
29. WebElements Periodic Table
30. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, Adv. Eng. Mater., 10: 534 (2008).
31. X. Yang and Y. Zhang, Mater. Chem. Phys., 132: 233 (2012).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© A. B. Melnick, V. Ya. Beloshapka, V. K. Soolshenko, 2019

E-mail: Phones and address of the editorial office About the collection User agreement