Issues

 / 

2019

 / 

vol. 17 / 

Issue 3

 



Download the full version of the article (in PDF format)

A. B. Melnick, V. Ya. Beloshapka, V. K. Soolshenko
«Modelling of Transition Metal High-Entropy Solid Solutions»
0557–0566 (2019)

PACS numbers: 05.10.Ln, 05.70.Ce, 64.75.Ef, 65.40.gd, 81.30.Bx, 81.30.Fb, 82.60.Lf

The compositions of high-entropy alloys based on the elements Ni, Co, Fe, Cr, Mn, Ti, V, Cu, Al, Zr, and Si are evaluated with use of thermodynamic approach. Optimal compositions for alloys with minimal Gibbs energy are obtained, and influence of various factors on formation of the alloys is described. As shown, the most stable alloys are nonequiatomic. The compositions for alloys, which will be in the state of homogeneous multicomponent solid solutions, are determined.

Keywords: high-entropy alloys, solid solution, Gibbs energy, transition metals

https://doi.org/10.15407/nnn.17.03.557

References
1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun et al., Adv. Eng. Mater., 6: 299 (2004). https://doi.org/10.1002/adem.200300567
2. J. W. Yeh, JOM, 65: 1759 (2013). https://doi.org/10.1007/s11837-013-0761-6
3. Y. Zhang, T.T. Zuo, Z. Tang et al., Progress in Materials Science, 61: 1 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001
4. M. H Tsai and J. W. Yeh, Mater. Res. Lett., 2: 107 (2014). https://doi.org/10.1080/21663831.2014.912690
5. D. B. Miracle and O. N. Senkov, Acta Mater., 122: 448 (2017). https://doi.org/10.1016/j.actamat.2016.08.081
6. M. C. Gao, C. Zhang, P. Gao, F. Zhang, L. Z. Ouyang, M. Widom, and J. A. Hawk, Curr. Opin. Solid State Mater. Sci., 21: 238 (2017). https://doi.org/10.1016/j.cossms.2017.08.001
7. Y. Tan, J. Li, S. Tang, J. Wang, and H. Kou, Journal of Alloys and Compounds, 742: 430 (2018). https://doi.org/10.1016/j.jallcom.2018.01.252
8. F. Tian, L. K. Varga, N. Chen, L. Delczeg, and L. Vitos, Phys. Rev. B, 87: 075144 (2013). https://doi.org/10.1103/PhysRevB.87.075144
9. F. Tian, L. Delczeg, N. Chen, L. K. Varga, J. Shen, and L. Vitos, Phys. Rev. B, 88: 085128 (2013). https://doi.org/10.1103/PhysRevB.88.085128
10. P. Singh, A. V. Smirnov, and D. D. Johnson, Phys. Rev. B, 91: 224204 (2015). https://doi.org/10.1103/PhysRevB.91.224204
11. D. Ma, B. Grabowski, F. K rmann, J. Neugebauer, and D. Raabe, Acta Mater., 100: 90 (2015). https://doi.org/10.1016/j.actamat.2015.08.050
12. C. Jiang and B. P. Uberuaga, Phys. Rev. Lett., 116: 105501 (2016). https://doi.org/10.1103/PhysRevLett.116.105501
13. M. C. Troparevsky, J. R. Morris, P. R. C. Kent, A. R. Lupini, G. M. Stocks, Phys. Rev. X, 5: 011041 (2015). https://doi.org/10.1103/PhysRevX.5.011041
14. F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, CALPHAD, 5: 1 (2014). https://doi.org/10.1016/j.calphad.2013.10.006
15. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM, 64: 839 (2012). https://doi.org/10.1007/s11837-012-0365-6
16. O. N. Senkov, J. D. Miller, D. B. Miracle, and C. Woodward, Nature Comm., 6: 6529 (2015). https://doi.org/10.1038/ncomms7529
17. U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (Boca Raton: CRC Press: 2010). https://doi.org/10.1142/9789814304771_0011
18. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, Adv. Eng. Mater., 10: 534 (2008). https://doi.org/10.1002/adem.200700240
19. Y. Zhang, Z. P. Lu, S. G. Ma, P. K. Liaw, Z. Tang, Y. Q. Cheng et al., MRS Commun., 4: 57 (2014). https://doi.org/10.1557/mrc.2014.11
20. S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys., 109: 103505 (2011). https://doi.org/10.1063/1.3587228
21. S. Fang, X. Xiao, L. Xia, W. Li, and Y. Dong, J. Non-Cryst. Solids, 321: 120 (2003). https://doi.org/10.1016/S0022-3093(03)00155-8
22. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, Scripta Mater., 104: 53 (2015). https://doi.org/10.1016/j.scriptamat.2015.03.023
23. A. Takeuchi and A. Inoue, Sci. Eng. A, 304Ц306: 446 (2001). https://doi.org/10.1016/S0921-5093(00)01446-5
24. A. B. Melnick and V. K. Soolshenko, Journal of Alloys and Compounds, 694: 223 (2017). https://doi.org/10.1016/j.jallcom.2016.09.189
25. B. Cantor, I. Chang, P. Knight, and A. Vincent, Mater. Sci. Eng. A, 375Ц377: 213 (2004). https://doi.org/10.1016/j.msea.2003.10.257
26. F. He, Z. Wang, Q. Wu, S. Niu, J. Li, J. Wang, and C. T. Liu, Scripta Materialia, 131: 42 (2017). https://doi.org/10.1016/j.scriptamat.2016.12.033
27. A. Takeuchi and A. Inoue, Materials Transactions, 41: 1372 (2000). https://doi.org/10.2320/matertrans1989.41.1372
28. A. Takeuchi and A. Inoue, Materials Transactions, 46: 2817 (2005). https://doi.org/10.2320/matertrans.46.2817
29. WebElements Periodic Table http://www.webelements.com/
30. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, Adv. Eng. Mater., 10: 534 (2008). https://doi.org/10.1002/adem.200700240
31. X. Yang and Y. Zhang, Mater. Chem. Phys., 132: 233 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© A. B. Melnick, V. Ya. Beloshapka, V. K. Soolshenko, 2019

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement