Issues

 / 

2019

 / 

vol. 17 / 

Issue 3

 



Download the full version of the article (in PDF format)

L. V. Poperenko, A. L. Yampolskiy, O. V. Makarenko, O. I. Zavalistyi, V. V. Prorok
«Observation of Surface-Plasmon Resonance in Metal–Dielectric Thin Films Covered by Graphene»
0473–0482 (2019)

PACS numbers: 07.07.Df, 68.65.Ac, 73.20.Mf, 73.21.Ac, 77.55.-g, 78.67.Pt, 78.67.Wj

The plasmon properties of hybrid metal–dielectric nanostructures on the base of thin Cu films protected from oxidation under atmospheric conditions by dielectric HfO2 layer and/or graphene layer are considered. The ellipsometry experiment and polarimetry with the excitation of surface plasmons into thin films within the Kretschmann’s geometry at a probe light wavelength of ????625 nm are fulfilled. The angular dependences of the ellipsometric parameters ?(?) and ?(?) as well as an internal reflection coefficient RIN(?IN) are measured. These experimental data are compared to corresponding dependences calculated by using the matrix method in accordance to the proposed theoretical model of the multilayer structure. The numerical values of the heterostructure-layers’ optical constants n and k, by means of the calculations, are a subject to variation in order to achieve the minimum error deviation between the experimental and calculated data. This gives a possibility for additional control of the optical parameters of the structure layers. The angular dependences of the internal reflection coefficient RIN(?IN) of the samples investigated possess a typical form of failure (deep minimum) at a certain angle, which is concerned with surface plasmon-resonance excitation. According to the feature of behaviour of these curves, conclusions due to suitability of using these heterostructures as plasmon sensors are made. To estimate the level of such sensors’ efficiency, theoretical calculations of the internal reflection coefficient at variation of the refractive index values of the medium, which is in contact with the upper structure surface, are performed. The appropriate graphs possess the inclination, which determines sensitivity of the sensor. Typical sensitivity value for these heterostructures is equal to 100–200 deg/RIU (Refractive Index Unit) in the vicinity of n???1.3 RIU.

Keywords: multilayer structures, dielectric layer, hafnium oxide, graphene, surface plasmon resonance, biosensors

https://doi.org/10.15407/nnn.17.03.473

References
1. I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, Surf. Sci., 74: 237 (1978). https://doi.org/10.1016/0039-6028(78)90283-2
2. J. G. Gordon and S. Ernst, Surf. Sci., 101: 499 (1980). https://doi.org/10.1016/0039-6028(80)90644-5
3. B. Liedberg, C. Nylander, and I. Lunstr m, Sens. Actuators, 4: 299 (1983). https://doi.org/10.1016/0250-6874(83)85036-7
4. B. Liedberg, C. Nylander, and I. Lundstr m, Biosens. Bioelectron., 10, Iss. 8: i (1995). https://doi.org/10.1016/0956-5663(95)96965-2
5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature, 424: 824 (2003). https://doi.org/10.1038/nature01937
6. S. A. Maier, Plasmonics: Fundamentals and Applications (New York, U.S.A: Springer: 2007). https://doi.org/10.1007/0-387-37825-1
7. V. G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D. E. Aznakayeva, B. Thackray, L. Britnell, B. D. Belle, F. Withers, I. P. Radko, Z. Han, S. I. Bozhevolnyi, K. S. Novoselov, A. K. Geim, and A. N. Grigorenko, Sci. Rep., 4: 5517 (2014). https://doi.org/10.1038/srep05517
8. H. Y. Hong, J. S. Ha, S.-S. Lee, and J. H. Park, ACS Appl. Mater. Interfaces, 9: 5014 (2017). https://doi.org/10.1021/acsami.6b15229
9. V. G. Kravets, Yu. V. Kudriavtsev, I. O. Liashenko, L. V. Poperenko, and A. O. Schherbakov, Bulletin of Taras Shevchenko National University of Kyiv, 3: 287 (2017).
10. O. V. Makarenko, A. L. Yampolskiy, B. V. Karlenko, and I. V. Slobodyaniuk, Kompleks Avtomatyzatsii Honiometra [An Automation Complex for Goniometer]: Patent 131954 UA. G01B 11/26 (Promyslova Vlasnist , No. 3: 4.89) (2019) (in Ukrainian).
11. A. L. Yampolskiy, O. V. Makarenko, B. V. Karlenko, A. I. Sharapa, and I. V. Slobodyaniuk, Proc. of 3-rd Ukrainian Sci.-Tech. Conf. ‘Spetsialne Pryladobuduvannya: Stan ta Perspektyvy [Special Instrument Making: State and Prospects] (December 4–5, 2018) (Kyiv: Checkmate: 2018), p. 164 (in Ukrainian).
12. A. L. Yampolskiy, O. V. Makarenko, L. V. Poperenko, and V. O. Lysiuk, Semiconductor Physics, Quantum Electronics and Optoelectronics, 21: 412 (2018). https://doi.org/10.15407/spqeo21.04.412
13. G. Hass, Physics of Thin Films: Advances in Research and Development, (New York–London: Academic Press: 1963), Vol. 1.
14. P. B. Johnson and R. W. Christy, Phys. Rev. B, 9: 5056 (1974). https://doi.org/10.1103/PhysRevB.9.5056
15. D. L. Wood, K. Nassau, T. Y. Kometani, and D. L. Nash, Appl. Opt., 29: 604 (1990). https://doi.org/10.1364/AO.29.000604
16. J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, Appl. Phys. Lett., 97: 091904 (2010). https://doi.org/10.1063/1.3475393
17. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, ACS Photonics, 2: 326 (2015). https://doi.org/10.1021/ph5004237
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© L. V. Poperenko, A. L. Yampolskiy, O. V. Makarenko, O. I. Zavalistyi, V. V. Prorok, 2019

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement