Issues

 / 

2019

 / 

vol. 17 / 

Issue 3

 



Download the full version of the article (in PDF format)

D. M. Nozdrenko, T. Yu. Matvienko, K. I. Bogutska, O. Yu. Artemenko, O. V. Ilchenko, and Yu. I. Prylutskyy
«Applying \(C_{60}\) Fullerenes Improve the Physiological State of Rats with Ischemia–Reperfusion Injury of Skeletal Muscle»
0409–0424 (2019)

PACS numbers: 81.16.Fg, 82.39.Jn, 87.16.dp, 87.16.dr, 87.16.Tb, 87.19.Ff, 87.64.Dz

The effect of water-soluble pristine \(C_{60}\) fullerenes as powerful antioxidants on the biochemical parameters of blood of rats under the ischemia–reperfusion injury of the skeletal muscle depending on its active and inactive states, as well as duration of this pathology, is studied. Levels of enzymes (creatine phosphokinase and lactate dehydrogenase) and their metabolic products (creatinine and lactic acid) in blood are measured for the evaluation of general physiological state of experimental rats. Moreover, levels of some components of antioxidant system, namely catalase, reduced glutathione, thiobarbituric-acid reactive substances, and hydrogen peroxide as indicators of lipid peroxidation and oxidative stress, are also measured. The pronounced tendency to decrease of these biochemical parameters of the blood at average by 20–25% in the experimental groups (1 mg/kg intramuscular introduction of water-soluble pristine \(C_{60}\) fullerene immediately after muscle reperfusion) compared to animals without the C60-fullerene introduction is shown regardless of the muscle-ischemia duration of 1, 2 or 3 h.

Keywords: \(C_{60}\) fullerene, skeletal muscle, ischemia–reperfusion injury, biochemical blood parameters

https://doi.org/10.15407/nnn.17.03.409

References
1. B. Erkut, A. zyaz c o lu, B. S. Karapolat, C. U. Ko o ullar , S. Keles, A. Ate , C. Gundogdu, and H. Kocak, Drug Target Insights, 2: 249 (2007). https://doi.org/10.4137/DTI.S303
2. A. J. Carvalho, N. H. McKee, and H. J. Green, Plast. Reconstr. Surg., 99, No. 1: 163 (1997).
3. S. Cuzzocrea, D. P. Riley, A. P. Caputi, and D. Salvemini, Pharmacol. Rev., 53, No. 1: 135 (2001).
4. H. Amani, R. Habibey, S. J. Hajmiresmail, S. Latifi, H. Pazoki-Toroudi, and O. Akhavan, J. Mater. Chem. B, 5, No. 48: 9452 (2017). https://doi.org/10.1039/C7TB01689A
5. P. J. Krustic, E. Wasserman, P. N. Keizer, J. R. Morton, and K. F. Preston, Science, 254, No. 5035: 1183 (1991). https://doi.org/10.1126/science.254.5035.1183
6. I. C. Wang, L. A. Tai, D. D. Lee, P. P. Kanakamma, C. K.-F. Shen, T. Y. Luh, Ch. H. Cheng, and K. C. Hwang, J. Med. Chem., 42, No. 22: 4614 (1999). https://doi.org/10.1021/jm990144s
7. D. M. Nozdrenko, D. O. Zavodovsky, T. Yu. Matvienko, S. Yu. Zay, K. I. Bogutska, Yu. I. Prylutskyy, U. Ritter, and P. Scharff, Nanoscale Res. Lett., 12: 115 (2017). https://doi.org/10.1186/s11671-017-1876-4
8. D. M. Nozdrenko, K. I. Bogutska, O. Yu. Artemenko, N. Ye. Nurishchenko, and Yu. I. Prylutskyy, Nanosistemi, Nanomateriali, Nanotehnologii, 16, No. 4: 745 (2018).
9. J. Kolosnjaj, H. Szwarc, and F. Moussa, Adv. Exp. Med. Biol., 620: 168 (2007). https://doi.org/10.1007/978-0-387-76713-0_13
10. S. V. Prylutska, I. I. Grynyuk, S. M. Grebinyk, O. P. Matyshevska, Yu. I. Prylutskyy, U. Ritter, C. Siegmund, and P. Scharff, Mat.-wiss. u. Werkstofftech., 40, No. 4: 238 (2009). https://doi.org/10.1002/mawe.200900433
11. G. V. Andrievsky, V. Klochkov, and L. Derevyanchenko, Fullerenes, Nanotubes and Carbon Nanostructures, 13: 363 (2005). https://doi.org/10.1080/15363830500237267
12. C. Richardson, D. Schuster, and S. Wilson, Proc. Electrochem. Soc., PV2000-9: 226 (2000).
13. F. Moussa, F. Trivin, R. Ceolin, M. Hadchouel, P. Y. Sizaret, V. Greugny, C. Fabre, A. Rassat, and H. Szwarc, Fullerene Science and Technology, 4: 21 (1996). https://doi.org/10.1080/10641229608001534
14. N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson, and F. Moussa, Nano Lett., 5, No. 12: 2578 (2005). https://doi.org/10.1021/nl051866b
15. T. I. Halenova, I. M. Vareniuk, N. M. Roslova, M. E. Dzerzhynsky, O. M. Savchuk, L. I. Ostapchenko, Yu. I. Prylutskyy, U. Ritter, and P. Scharff, RSC Adv., 6, No. 102: 100046 (2016). https://doi.org/10.1039/C6RA20291H
16. M. Tolkachov, V. Sokolova, V. Korolovych, Yu. Prylutskyy, M. Epple, U. Ritter, and P. Scharff, Mat.-wiss. u. Werkstofftech., 47, Nos. 2–3: 216 (2016). https://doi.org/10.1002/mawe.201600486
17. Y. Yasinskyi, A. Protsenko, O. Maistrenko, V. Rybalchenko, Yu. Prylutskyy, E. Tauscher, U. Ritter, and I. Kozeretska, Toxicol. Lett., 310: 92 (2019). https://doi.org/10.1016/j.toxlet.2019.03.006
18. I. V. Vereshchaka, N. V. Bulgakova, A. V. Maznychenko, O. O. Gonchar, Yu. I. Prylutskyy, U. Ritter, W. Moska, T. Tomiak, D. M. Nozdrenko, I. V. Mishchenko, and A. I. Kostyukov, Front. Physiol., 9: 517 (2018). https://doi.org/10.3389/fphys.2018.00517
19. S. V. Eswaran, Curr. Sci., 114, No. 9: 1846 (2018). https://doi.org/10.18520/cs/v114/i09/1846-1850
20. A. Golub, O. Matyshevska, S. Prylutska, V. Sysoyev, L. Ped, V. Kudrenko, E. Radchenko, Yu. Prylutskyy, P. Scharff, and T. Braun, J. Mol. Liq., 105, Nos. 2–3: 141 (2003). https://doi.org/10.1016/S0167-7322(03)00044-8
21. U. Ritter, Yu. I. Prylutskyy, M. P. Evstigneev, N. A. Davidenko, V. V. Cherepanov, A. I. Senenko, O. A. Marchenko, and A. G. Naumovets, Fullerenes, Nanotubes and Carbon Nanostructures, 23, No. 6: 530 (2015). https://doi.org/10.1080/1536383X.2013.870900
22. D. N. Nozdrenko, A. N. Shut, and Y. I. Prylutskyy, Biopolym. Cell, 24, No. 1: 80 (2005). https://doi.org/10.7124/bc.0006E0
23. D. M. Nozdrenko, O. M. Abramchuk, V. M. Soroca, and N. S. Miroshnichenko, Ukr. Biochem. J., 87, No. 5: 38 (2015). https://doi.org/10.15407/ubj87.05.038
24. S. Y. Zay, D. O. Zavodovskyi, K. I. Bogutska, D. N. Nozdrenko, and Yu. I. Prylutskyy, Fiziol. Zh., 62, No. 3: 66 (2016). https://doi.org/10.15407/fz62.03.066
25. A. Vignaud, C. Hourde, F. Medja, O. Agbulut, G. Butler-Browne, and A. Ferry, J. Biomed. Biotechnol., 2010: 724914 (2010). https://doi.org/10.1155/2010/724914
26. S. Loerakker, C. W. Oomens, E. Manders, T. Schakel, D. L. Bader, F. P. Baaijens, K. Nicolay, and G. J. Strijkers, Magn. Reson. Med., 66, No. 2: 528 (2011). https://doi.org/10.1002/mrm.22801
27. Z. Tur czi, P. Ar nyi, . Luk ts, D. Garbaisz, G. Lotz, L. Hars nyi, and A. Szij rt , PLoS One, 9, No. 1: e84783 (2014). https://doi.org/10.1371/journal.pone.0084783
28. I. B. R cz, G. Illy s, L. Sarkadi, and J. Hamar, J. Eur. Surg. Res., 29, No. 4: 254 (1997). https://doi.org/10.1159/000129531
29. D. M. Nozdrenko, K. I. Bogutska, Yu. I. Prylutskyy, V. F. Korolovych, M. P. Evstigneev, U. Ritter, and P. Scharff, Fiziol. Zh., 61, No. 2: 48 (2015).
30. Yu. I. Prylutskyy, I. V. Vereshchaka, A. V. Maznychenko, N. V. Bulgakova, O. O. Gonchar, O. A. Kyzyma, U. Ritter, P. Scharff, T. Tomiak, D. M. Nozdrenko, I. V. Mischenko, and A. I. Kostyukov, J. Nanobiotechnol., 15: 8 (2017). https://doi.org/10.1186/s12951-016-0246-1
31. D. P. Casey and M. J. Joyner, J. Appl. Physiol., 111: 1527 (2011). https://doi.org/10.1152/japplphysiol.00895.2011
32. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine (Oxford: Clarendon Press: 1989).
33. L. L. Ji, Proc. Soc. Exp. Biol. Med., 222: 283 (1999). 34. B. Lu, K. Kwan, Y. A. Levine, P. S. Olofsson, H. Yang, J. Li, S. Joshi, H. Wang, U. Andersson, S. S. Chavan, and K. J. Tracey, Mol. Med., 20: 350 (2014). https://doi.org/10.2119/molmed.2013.00117
35. H. Hagberg, Pfl gers Arch., 404: 342 (1985). https://doi.org/10.1007/BF00585346
36. T. Ivanics, Z. Mikl s, Z. Ruttner, S. B tkai, D. W. Slaaf, R. S. Reneman, A. T th, and L. Ligeti, Pfl gers Arch., 440, No. 2: 302 (2000). https://doi.org/10.1007/s004240051052
37. D. A. Jones, Physiol. Scand., 156, No. 3: 265 (1996). https://doi.org/10.1046/j.1365-201X.1996.192000.x
38. R. Assaly, A. D. Tassigny, S. Paradis, S. Jacquin, A. Berdeaux, and D. Morin, Eur. J. Pharmacol., 675, Nos. 1–3: 6 (2012). https://doi.org/10.1016/j.ejphar.2011.11.036
39. E. Barbieri and P. Sestili, J. Signal Transduct., article ID 982794 (2012). https://doi.org/10.1155/2012/982794
40. V. L. Vega, L. Mardones, M. Maldonado, S. Nicovani, V. Manr quez, J. Roa, and P. H. Ward, Shock, 14, No. 5: 565 (2000). https://doi.org/10.1097/00024382-200014050-00012
41. N. Baudry, E. Laemmel, and E. Vicaut, Am. J. Physiol. Heart Circ. Physiol., 294, No. 2: H821 (2008). https://doi.org/10.1152/ajpheart.00378.2007
42. M. J. Jackson, Antioxid. Redox Signal, 15, No. 9: 2477 (2011). https://doi.org/10.1089/ars.2011.3976
43. O. O. Gonchar, A. V. Maznychenko, N. V. Bulgakova, I. V. Vereshchaka, T. Tomiak, U. Ritter, Yu. I. Prylutskyy, I. M. Mankovska, and A. I. Kostyukov, Oxidative Medicine and Cellular Longevity, article ID 2518676 (Austin, TX, USA: Landes Bioscience: 2018). https://doi.org/10.1155/2018/2518676
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© D. M. Nozdrenko, T. Yu. Matvienko, K. I. Bogutska, O. Yu. Artemenko, O. V. Ilchenko, Yu. I. Prylutskyy, 2019

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement