vol. 17 / 

Issue 3


Download the full version of the article (in PDF format)

D. M. Nozdrenko, T. Yu. Matvienko, K. I. Bogutska, O. Yu. Artemenko, O. V. Ilchenko, and Yu. I. Prylutskyy
«Applying \(C_{60}\) Fullerenes Improve the Physiological State of Rats with Ischemia–Reperfusion Injury of Skeletal Muscle»
0409–0424 (2019)

PACS numbers: 81.16.Fg, 82.39.Jn, 87.16.dp, 87.16.dr, 87.16.Tb, 87.19.Ff, 87.64.Dz

The effect of water-soluble pristine \(C_{60}\) fullerenes as powerful antioxidants on the biochemical parameters of blood of rats under the ischemia–reperfusion injury of the skeletal muscle depending on its active and inactive states, as well as duration of this pathology, is studied. Levels of enzymes (creatine phosphokinase and lactate dehydrogenase) and their metabolic products (creatinine and lactic acid) in blood are measured for the evaluation of general physiological state of experimental rats. Moreover, levels of some components of antioxidant system, namely catalase, reduced glutathione, thiobarbituric-acid reactive substances, and hydrogen peroxide as indicators of lipid peroxidation and oxidative stress, are also measured. The pronounced tendency to decrease of these biochemical parameters of the blood at average by 20–25% in the experimental groups (1 mg/kg intramuscular introduction of water-soluble pristine \(C_{60}\) fullerene immediately after muscle reperfusion) compared to animals without the C60-fullerene introduction is shown regardless of the muscle-ischemia duration of 1, 2 or 3 h.

Keywords: \(C_{60}\) fullerene, skeletal muscle, ischemia–reperfusion injury, biochemical blood parameters

1. B. Erkut, A. zyaz c o lu, B. S. Karapolat, C. U. Ko o ullar , S. Keles, A. Ate , C. Gundogdu, and H. Kocak, Drug Target Insights, 2: 249 (2007).
2. A. J. Carvalho, N. H. McKee, and H. J. Green, Plast. Reconstr. Surg., 99, No. 1: 163 (1997).
3. S. Cuzzocrea, D. P. Riley, A. P. Caputi, and D. Salvemini, Pharmacol. Rev., 53, No. 1: 135 (2001).
4. H. Amani, R. Habibey, S. J. Hajmiresmail, S. Latifi, H. Pazoki-Toroudi, and O. Akhavan, J. Mater. Chem. B, 5, No. 48: 9452 (2017).
5. P. J. Krustic, E. Wasserman, P. N. Keizer, J. R. Morton, and K. F. Preston, Science, 254, No. 5035: 1183 (1991).
6. I. C. Wang, L. A. Tai, D. D. Lee, P. P. Kanakamma, C. K.-F. Shen, T. Y. Luh, Ch. H. Cheng, and K. C. Hwang, J. Med. Chem., 42, No. 22: 4614 (1999).
7. D. M. Nozdrenko, D. O. Zavodovsky, T. Yu. Matvienko, S. Yu. Zay, K. I. Bogutska, Yu. I. Prylutskyy, U. Ritter, and P. Scharff, Nanoscale Res. Lett., 12: 115 (2017).
8. D. M. Nozdrenko, K. I. Bogutska, O. Yu. Artemenko, N. Ye. Nurishchenko, and Yu. I. Prylutskyy, Nanosistemi, Nanomateriali, Nanotehnologii, 16, No. 4: 745 (2018).
9. J. Kolosnjaj, H. Szwarc, and F. Moussa, Adv. Exp. Med. Biol., 620: 168 (2007).
10. S. V. Prylutska, I. I. Grynyuk, S. M. Grebinyk, O. P. Matyshevska, Yu. I. Prylutskyy, U. Ritter, C. Siegmund, and P. Scharff, Mat.-wiss. u. Werkstofftech., 40, No. 4: 238 (2009).
11. G. V. Andrievsky, V. Klochkov, and L. Derevyanchenko, Fullerenes, Nanotubes and Carbon Nanostructures, 13: 363 (2005).
12. C. Richardson, D. Schuster, and S. Wilson, Proc. Electrochem. Soc., PV2000-9: 226 (2000).
13. F. Moussa, F. Trivin, R. Ceolin, M. Hadchouel, P. Y. Sizaret, V. Greugny, C. Fabre, A. Rassat, and H. Szwarc, Fullerene Science and Technology, 4: 21 (1996).
14. N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson, and F. Moussa, Nano Lett., 5, No. 12: 2578 (2005).
15. T. I. Halenova, I. M. Vareniuk, N. M. Roslova, M. E. Dzerzhynsky, O. M. Savchuk, L. I. Ostapchenko, Yu. I. Prylutskyy, U. Ritter, and P. Scharff, RSC Adv., 6, No. 102: 100046 (2016).
16. M. Tolkachov, V. Sokolova, V. Korolovych, Yu. Prylutskyy, M. Epple, U. Ritter, and P. Scharff, Mat.-wiss. u. Werkstofftech., 47, Nos. 2–3: 216 (2016).
17. Y. Yasinskyi, A. Protsenko, O. Maistrenko, V. Rybalchenko, Yu. Prylutskyy, E. Tauscher, U. Ritter, and I. Kozeretska, Toxicol. Lett., 310: 92 (2019).
18. I. V. Vereshchaka, N. V. Bulgakova, A. V. Maznychenko, O. O. Gonchar, Yu. I. Prylutskyy, U. Ritter, W. Moska, T. Tomiak, D. M. Nozdrenko, I. V. Mishchenko, and A. I. Kostyukov, Front. Physiol., 9: 517 (2018).
19. S. V. Eswaran, Curr. Sci., 114, No. 9: 1846 (2018).
20. A. Golub, O. Matyshevska, S. Prylutska, V. Sysoyev, L. Ped, V. Kudrenko, E. Radchenko, Yu. Prylutskyy, P. Scharff, and T. Braun, J. Mol. Liq., 105, Nos. 2–3: 141 (2003).
21. U. Ritter, Yu. I. Prylutskyy, M. P. Evstigneev, N. A. Davidenko, V. V. Cherepanov, A. I. Senenko, O. A. Marchenko, and A. G. Naumovets, Fullerenes, Nanotubes and Carbon Nanostructures, 23, No. 6: 530 (2015).
22. D. N. Nozdrenko, A. N. Shut, and Y. I. Prylutskyy, Biopolym. Cell, 24, No. 1: 80 (2005).
23. D. M. Nozdrenko, O. M. Abramchuk, V. M. Soroca, and N. S. Miroshnichenko, Ukr. Biochem. J., 87, No. 5: 38 (2015).
24. S. Y. Zay, D. O. Zavodovskyi, K. I. Bogutska, D. N. Nozdrenko, and Yu. I. Prylutskyy, Fiziol. Zh., 62, No. 3: 66 (2016).
25. A. Vignaud, C. Hourde, F. Medja, O. Agbulut, G. Butler-Browne, and A. Ferry, J. Biomed. Biotechnol., 2010: 724914 (2010).
26. S. Loerakker, C. W. Oomens, E. Manders, T. Schakel, D. L. Bader, F. P. Baaijens, K. Nicolay, and G. J. Strijkers, Magn. Reson. Med., 66, No. 2: 528 (2011).
27. Z. Tur czi, P. Ar nyi, . Luk ts, D. Garbaisz, G. Lotz, L. Hars nyi, and A. Szij rt , PLoS One, 9, No. 1: e84783 (2014).
28. I. B. R cz, G. Illy s, L. Sarkadi, and J. Hamar, J. Eur. Surg. Res., 29, No. 4: 254 (1997).
29. D. M. Nozdrenko, K. I. Bogutska, Yu. I. Prylutskyy, V. F. Korolovych, M. P. Evstigneev, U. Ritter, and P. Scharff, Fiziol. Zh., 61, No. 2: 48 (2015).
30. Yu. I. Prylutskyy, I. V. Vereshchaka, A. V. Maznychenko, N. V. Bulgakova, O. O. Gonchar, O. A. Kyzyma, U. Ritter, P. Scharff, T. Tomiak, D. M. Nozdrenko, I. V. Mischenko, and A. I. Kostyukov, J. Nanobiotechnol., 15: 8 (2017).
31. D. P. Casey and M. J. Joyner, J. Appl. Physiol., 111: 1527 (2011).
32. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine (Oxford: Clarendon Press: 1989).
33. L. L. Ji, Proc. Soc. Exp. Biol. Med., 222: 283 (1999). 34. B. Lu, K. Kwan, Y. A. Levine, P. S. Olofsson, H. Yang, J. Li, S. Joshi, H. Wang, U. Andersson, S. S. Chavan, and K. J. Tracey, Mol. Med., 20: 350 (2014).
35. H. Hagberg, Pfl gers Arch., 404: 342 (1985).
36. T. Ivanics, Z. Mikl s, Z. Ruttner, S. B tkai, D. W. Slaaf, R. S. Reneman, A. T th, and L. Ligeti, Pfl gers Arch., 440, No. 2: 302 (2000).
37. D. A. Jones, Physiol. Scand., 156, No. 3: 265 (1996).
38. R. Assaly, A. D. Tassigny, S. Paradis, S. Jacquin, A. Berdeaux, and D. Morin, Eur. J. Pharmacol., 675, Nos. 1–3: 6 (2012).
39. E. Barbieri and P. Sestili, J. Signal Transduct., article ID 982794 (2012).
40. V. L. Vega, L. Mardones, M. Maldonado, S. Nicovani, V. Manr quez, J. Roa, and P. H. Ward, Shock, 14, No. 5: 565 (2000).
41. N. Baudry, E. Laemmel, and E. Vicaut, Am. J. Physiol. Heart Circ. Physiol., 294, No. 2: H821 (2008).
42. M. J. Jackson, Antioxid. Redox Signal, 15, No. 9: 2477 (2011).
43. O. O. Gonchar, A. V. Maznychenko, N. V. Bulgakova, I. V. Vereshchaka, T. Tomiak, U. Ritter, Yu. I. Prylutskyy, I. M. Mankovska, and A. I. Kostyukov, Oxidative Medicine and Cellular Longevity, article ID 2518676 (Austin, TX, USA: Landes Bioscience: 2018).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© D. M. Nozdrenko, T. Yu. Matvienko, K. I. Bogutska, O. Yu. Artemenko, O. V. Ilchenko, Yu. I. Prylutskyy, 2019

E-mail: Phones and address of the editorial office About the collection User agreement