Issues

 / 

2019

 / 

vol. 17 / 

Issue 1

 



Download the full version of the article (in PDF format)

N. A. Kurgan, L. I. Karbovskaya, and V. L. Karbivskyy
«Functional Sensory Nanostructures (Review)»
167–206 (2019)

PACS numbers: 07.07.Df, 61.46.-w, 81.05.Zx, 81.07.-b, 81.16.-c, 82.47.Rs, 87.85.Qr

The main mechanisms of functioning and modelling of the perspective sensory systems based on metal nanoparticles, quantum dots, nanowires, carbon nanotubes and metallic-oxide nanostructures are considered. Data are presented on the features of the structure, properties and ability to modify the nanostructures, which allow circumventing restrictions occurring when ‘traditional’ sensory systems are used. The prospects of using the nanosensors for early diagnostics of diseases, registration of processes occurring in living systems, thermometry of high spatial resolution, contactless determination of pH, and measurement of low concentrations of harmful impurities are noted.

Keywords: sensory systems, metal nanoparticles, quantum dots, nanowires, carbon nanotubes, nanostructures, nanotechnologies

https://doi.org/10.15407/nnn.17.01.167

References
1. J. Jeevanandam, A. Barhoum, Y. S Chan, A. Dufresne, and M. K Danquah, Beilstein J. Nanotechnol., 9: 1050 (2018). https://doi.org/10.3762/bjnano.9.98
2. G. Cao and Y. Wang, Nanostructures and Nanomaterials Synthesis, Properties, and Applications (London: Imperial College Press: 2004). https://doi.org/10.1142/7885
3. M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, KONA Powder Part. J., 34: 800 (2017). https://doi.org/10.14356/kona.2017009
4. H. Schmidt, Appl. Organomet. Chem., 15, No. 5: 331 (2001). https://doi.org/10.1002/aoc.169
5. M. Grzelczak, J. P rez-Juste, P. Mulvaney, and L. M. Liz-Marz n, Chem. Soc. Rev., 37: 1783 (2008). https://doi.org/10.1039/b711490g
6. J. D. Robertson, L. Rizzello, M. Avila-Olias, J. Gaitzsch, C. Contini, M. S. Mago , S. A. Renshaw, and G. Battaglia, Sci. Rep., 6: 27494 (2016). https://doi.org/10.1038/srep27494
7. Z. Wu, S. Yang, and W. Wu, Nanoscale, 8: 1237 (2016). https://doi.org/10.1039/C5NR07681A
8. S. Szunerits, J. Spadavecchia, and R. Boukherroub, Rev. Anal. Chem., 33, No. 3: 153 (2014). https://doi.org/10.1515/revac-2014-0011
9. L. Y. Chou, K. Ming, and W. C. Chan, Chem. Soc. Rev., 40, No. 1: 233 (2011). https://doi.org/10.1039/C0CS00003E
10. Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei, and C. Burda, J. Am. Chem. Soc., 130, No. 32: 10643 (2008). https://doi.org/10.1021/ja801631c
11. E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, Chem. Soc. Rev., 41: 2740 (2012). https://doi.org/10.1039/C1CS15237H
12. E. Blanco, H. Shen, and M. Ferrari, Nat. Biotechnol., 33: 941 (2015). https://doi.org/10.1038/nbt.3330
13. N. Bertrand, J. Wu, X. Xu, N. Kamaly, and O. C. Farokhzad, Adv. Drug Deliv. Rev., 66: 2 (2014). https://doi.org/10.1016/j.addr.2013.11.009
14. L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, Nanotoday, 10, No. 2: 213 (2015). https://doi.org/10.1016/j.nantod.2015.02.007
15. V. K. Khanna, Def. Sci. J., 58, No. 5: 608 (2008). https://doi.org/10.14429/dsj.58.1683
16. J. J. Storhoff, S. S. Marla, P. Bao, S. Hagenow, H. Mehta, A. Lucas, V. Garimella, T. Patno, W. Buckingham et al., Biosens. Bioelectron., 19: 875 (2004). https://doi.org/10.1016/j.bios.2003.08.014
17. C. Sonnichsen, B. M. Reinhard, J. Liphard, and A. P. Alivisatos, Nat. Biotechnol., 23: 741 (2005). https://doi.org/10.1038/nbt1100
18. W. J. Qin and L. Y. Yung, Nucleic Acids Res., 35, No. 17: e111 (2007). https://doi.org/10.1093/nar/gkm602
19. L. M. Zanoli, R. D'Agata, and G. Spoto, Anal. Bioanal. Chem., 402: 1759 (2012). https://doi.org/10.1007/s00216-011-5318-3
20. S. Vial, Y. Berrahal, M. Prado, and J. Wenger, ACS Sens., 2, No. 2: 251 (2017). https://doi.org/10.1021/acssensors.6b00737
21. C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff, Nature, 382: 607 (1996). https://doi.org/10.1038/382607a0
22. W. Lu, L. Wang, J. Li, Y. Zhao, Z. Zhou, J. Shi, X. Zuo, and D. Pan, Sci. Rep., 5: 10158 (2015). https://doi.org/10.1038/srep10158
23. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, Science, 277: 1078 (1997). https://doi.org/10.1126/science.277.5329.1078
24. F. Zarlaida and M. Adlim, Microchim. Acta, 184, No. 1: 45 (2017). https://doi.org/10.1007/s00604-016-1967-4
25. X. Liu, J.-J. Xiang, Y. Tang, X.-L. Zhang, Q.-Q. Fu, J.-H. Zou, and Y. H. Lin, Anal. Chim. Acta, 745C: 99 (2012). https://doi.org/10.1016/j.aca.2012.06.029
26. Z. Gao, H. Ye, D. Tang, J. Tao, S. Habibi, A. Minerick, D. Tang, and X. Xia, Nano Lett., 17, No. 9: 5572 (2017). https://doi.org/10.1021/acs.nanolett.7b02385
27. N. Nagatani, R. Tanaka, T. Yuhi, T. Endo, K. Kerman, Y. Takamura, and E. Tamiya, Sci. Technol. Adv. Mater., 7: 270 (2006). https://doi.org/10.1016/j.stam.2006.02.002
28. J.-M. Nam, C. S. Thaxton, and C. A. Mirkin, Science, 301, No. 5641: 1884 (2003). https://doi.org/10.1126/science.1088755
29. C.-H. Yeh, H.-H. Huang, T.-C. Chang, H.-P. Lin, and Y.-C. Lin, Biosens. Bioelectron., 24, No. 6: 1661 (2009).
30. Q. Yu, H. Li, C. Li, S. Zhang, J. Shen, and Z. Wang, Food Control, 54: 347 (2015). https://doi.org/10.1016/j.foodcont.2015.02.019
31. J. J. Storhoff, A. D. Lucas, V. Garimella, Y. P. Bao, and U. R. M ller, Nat. Biotechnol., 22, No. 7: 883 (2004). https://doi.org/10.1038/nbt977
32. M. Cordeiro, F. F. Carlos, P. Pedrosa, A. Lopez, and P. V. Baptista, Diagnostics, 6, No. 4: 43 (2016). https://doi.org/10.3390/diagnostics6040043
33. D.-K. Lim, A. Kumar, and J.-M. Nam, Detection of Non-Amplified Genomic DNA (Eds. G. Spoto and R. Corradini) (Berlin: Springer: 2012), p. 67. https://doi.org/10.1007/978-94-007-1226-3_3
34. T. A. Taton, C. A. Mirkin, and R. L. Letsinger, Science, 289: 1757 (2000). https://doi.org/10.1126/science.289.5485.1757
35. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, J. Am. Chem. Soc., 122, No. 19: 4640 (2000). https://doi.org/10.1021/ja993825l
36. R. C. Bailey, J.-M. Nam, C. A. Mirkin, and J. T. Hupp, J. Am. Chem. Soc., 125, No. 44: 13541 (2003). https://doi.org/10.1021/ja035479k
37. G. K. Kouassi and J. Irudayaraj, Anal. Chem., 78, No. 10: 3234 (2006). https://doi.org/10.1021/ac051621j
38. S. C. McBain, H. H. Yiu, and J. Dobson, Int. J. Nanomedicine, 3, No. 2: 169 (2008).
39. E. Ruiz-Hern ndez, A. Baeza, and M. Vallet-Reg , ACS Nano, 5, No. 2: 1259 (2011). https://doi.org/10.1021/nn1029229
40. N. Zhu, A. Zhang, P. He, and Y. Fang, Electroanalysis, 16, No. 23: 1925 (2004). https://doi.org/10.1002/elan.200303028
41. W. Shen, B. D. Schrag, M. J. Carter, J. Xie, C. Xu, S. Sun, and G. Xiao, J. Appl. Phys., 103: 07A306 (2008). https://doi.org/10.1063/1.2832880
42. J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, Chem. Soc. Rev., 42, No. 22: 8733 (2013). https://doi.org/10.1039/c3cs60141b
43. P. Podesva and F. Foret, Curr. Anal. Chem., 9: 642 (2013). https://doi.org/10.2174/1573411011309040015
44. N. Olichwer, A. Meyer, M. Yesilmen, and T. Vossmeyer, J. Mater. Chem. C, 4: 8214 (2016). https://doi.org/10.1039/C6TC02412B
45. F.-G. Banica, Chemical Sensors and Biosensors: Fundamentals and Applications (Chichester, New Jersey: John Wiley & Sons: 2012). https://doi.org/10.1002/9781118354162
46. Y. Joseph, B. Guse, T. Vossmeyer, and A. Yasuda, J. Phys. Chem. C, 112, No. 32: 12507 (2008). https://doi.org/10.1021/jp8013546
47. T. Frecker, D. Bailey, X. Arzeta-Ferrer, J. McBride, and S. J. Rosenthal, J. Solid State Sci. Technol., 5, No. 1: R3019 (2016). https://doi.org/10.1149/2.0031601jss
48. R. E. Bailey, A. M.Smith, and Sh. Nie, Physica E, 25: 1 (2004). https://doi.org/10.1016/j.physe.2004.07.013
49. A. Rogach, Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications (Berlin: Springer: 2008). https://doi.org/10.1007/978-3-211-75237-1
50. Y. Pu, F. Cai, D. Wang, J.-X. Wang, and J.-F. Chen, Ind. Eng. Chem. Res., 57, No. 6: 1790 (2018). https://doi.org/10.1021/acs.iecr.7b04836
51. C. Priester and M. Lannoo, Curr. Opin. Solid State Mater. Sci., 2, No. 6: 716 (1997). https://doi.org/10.1016/S1359-0286(97)80015-0
52. R. Freeman, T. I. Finder, L. Bahshi, and I. Willner, Nano Lett., 9, No. 5: 2073 (2009). https://doi.org/10.1021/nl900470p
53. A. Bueno, I. Suarez, R. Abargues, S. Sales, and J. P. Mart nez-Pastor, IEEE Sensors J., 12, No. 10: 3069 (2012). https://doi.org/10.1109/JSEN.2012.2210037
54. G. de Bastida, F. J. Arregui, J. Goicoechea, and I. R. Matias, IEEE Sensors J., 6, No. 6: 1378 (2006). https://doi.org/10.1109/JSEN.2006.884436
55. B. Larri n, M. Hern ez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Mat as, Journal of Sensors, 2009: 932471 (2009). https://doi.org/10.1155/2009/932471
56. J.-H. Yoo, S. J. Park, and J. S. Kim, Mol. Cryst. Liq. Cryst., 519, No. 1: 62 (2010). https://doi.org/10.1080/15421401003598520
57. R. Liang, R. Tian, W. Shi, Z. Liu, D. Yan, M. Wei, D. G. Evans, and X. Duan, Chem. Commun., 49, No. 10: 969 (2013). https://doi.org/10.1039/C2CC37553B
58. Q. Ding, X. Zhang, L. Li, X. Lou, J. Xu, P. Zhou, and M. Yan, Opt. Express, 25, No. 16: 19065 (2017). https://doi.org/10.1364/OE.25.019065
59. X. Yin, W. Wang, Y. Yu, Y. Geng, and X. Li, IEEE Sensors J., 15, No. 5: 2810 (2015). https://doi.org/10.1109/JSEN.2014.2380780
60. H. Liu, Y. Fan, J. Wang, Z. Song, H. Shi, R. Han, Y. Sha, and Y. Jiang, Sci. Rep., 5: 14879 (2015). https://doi.org/10.1038/srep14879
61. J. Callan and F. M. Raymo, Quantum Dot Sensors: Technology and Commercial Applications (Boca Raton, USA: CRC Press: 2013). https://doi.org/10.1201/b14595
62. J. Hu, Z. Y. Wang, C. C. Li, and C. Y. Zhang, Chem. Commun., 53, No. 100: 13284 (2017). https://doi.org/10.1039/C7CC07752A
63. Ch. Zhang, H. Yeh, M. T. Kuroki, and T. Wang, Nat. Mater., 4: 826 (2005). https://doi.org/10.1038/nmat1508
64. R. Freeman, X. Liu, and I. Willner, J. Am. Chem. Soc., 133, No. 30: 11597 (2011). https://doi.org/10.1021/ja202639m
65. R. Freeman and I. Willner, Chem. Soc. Rev., 41: 4067 (2012). https://doi.org/10.1039/c2cs15357b
66. Y. Zhang and T. H. Wang, Theranostics, 2, No. 7: 631 (2012). https://doi.org/10.7150/thno.4308
67. Z. Wang, L. Wang, Q. Zhang, B. Tang, and Ch. Zhang, Chem. Sci., 9: 1330 (2018). https://doi.org/10.1039/C7SC04813K
68. S. M. Sadeghi and S. M. Sadeghi, Proc. SPIE, 8570: 85700J (2013). https://doi.org/10.1117/12.2003079
69. A. Sukhanova, A. S. Susha, A. Bek, S. Mayilo, A. L. Rogach et al., Nano Lett., 7: 2322 (2007). https://doi.org/10.1021/nl070966+
70. A. Zhang, G. Zheng, and Ch. Lieber, Nanowires Building Blocks for Nanoscience and Nanotechnology (Berlin: Springer: 2016). https://doi.org/10.1007/978-3-319-41981-7
71. D. J. Hill and J. F. Cahoon, Material Matters, 12, No.1: 10 (2017). https://doi.org/10.24877/rt.2
72. N. M. Doan, L. Qiang, Z. Li, S. Vaddiraju, G.W. Bishop, J. F. Rusling, and F. Papadimitrakopoulos, Sensors, 15, No. 3: 6091 (2015). https://doi.org/10.3390/s150306091
73. A. Colli, A. Fasoli, S. Pisana, Y. Fu, P. Beecher, W. I. Milne, and A. C. Ferrari, Nano Lett., 8, No. 5: 1358 (2008). https://doi.org/10.1021/nl080033t
74. Y. Ko, J. Kim, D. Kim, Y. Yamauchi, J. Kim, and J. You, Sci. Rep., 7: 2282 (2017).
75. D. Zhang, G. Cheng, J. Wang, Ch. Zhang, Z. Liu, Yu. Zuo, J. Zheng, Ch. Xue, Ch. Li, B. Cheng, and Q. Wang, Nanoscale Res. Lett., 9: 661 (2014). https://doi.org/10.1186/1556-276X-9-661
76. S. Wu, Y. M. Shao, T. X. Nie, L. Xu, Z. M. Jiang, and X. J. Yang, Nanoscale Res Lett., 10: 325 (2015). https://doi.org/10.1186/s11671-015-1025-x
77. H.-J. Choi, Semiconductor Nanostructures for Optoelectronic Devices, NanoScience and Technology (Ed. G.-C. Yi) (Berlin: Springer: 2012), p. 338. https://doi.org/10.1007/978-3-642-22480-5
78. L. Ni, E. Jacques, R. Rogel, A. C. Sala n, L. Pichon, and G. Wenga, Procedia Engineering, 47: 240 (2012). https://doi.org/10.1016/j.proeng.2012.09.128
79. T. Ishiyama, S. Morishima, Y. Ishii, and M. Fukuda, AIP Conf. Proc., 1585: 171 (2014). https://doi.org/10.1063/1.4866637
80. X. Lu, T. Hanrath, K. P. Johnston and B. A. Korgel, Nano Lett., 3, No.1: 93 (2003). https://doi.org/10.1021/nl0202307
81. F. Cansell and C. Aymonier, J. Supercrit. Fluids, 47, No. 3: 508 (2009). https://doi.org/10.1016/j.supflu.2008.10.002
82. S. Marre, F. Cansell, and C. Aymonier, Nanotech., 17: 4594 (2006). https://doi.org/10.1088/0957-4484/17/18/011
83. A. Mao, H. T. Ng, P. Nguyen, M. McNeil, and M. Meyyappan, J. Nanosci. Nanotechnol., 5, No. 5: 831 (2005). https://doi.org/10.1166/jnn.2005.107
84. F. Wang, A. Dong, and W. E. Buhro, Chem. Rev., 116: 10888 (2016). https://doi.org/10.1021/acs.chemrev.5b00701
85. F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, and W. E. Buhro, Inorg. Chem., 45, No. 19: 7511 (2006). https://doi.org/10.1021/ic060498r
86. R. Laocharoensuk, K. Palaniappan, N. A. Smith, R. M. Dickerson, D. J. Werder, J. K. Baldwin, and J. A. Hollingsworth, Nat. Nanotech., 8: 660 (2013). https://doi.org/10.1038/nnano.2013.149
87. S. Berrier, D. Li, V. Solomon, M. Bauer, and C. Li, Microsc. Microanal., 20: 1990 (2014). https://doi.org/10.1017/S1431927614011684
88. H. Suzuki, H. Araki, M. Tosa, and T. Noda, Mater. Trans., 48, No. 8: 2202 (2007). https://doi.org/10.2320/matertrans.MRA2007059
89. Q. An, Y. Liu, R. Jiang, and X. Meng, Nanoscale, 10, No. 31: 14976 (2018). https://doi.org/10.1039/C8NR04143A
90. Y.-H. Yang, S.-J. Wu, H.-S. Chiu, P.-I. Lin, and Y.-T. Chen, J. Phys. Chem. B, 108: 846 (2004). https://doi.org/10.1021/jp030663d
91. N.-H. Saddiqi, H. Javed, M. Islam, and Kh. M. Ghauri, Chem. Mat. Res., 6, No. 1: 76 (2014).
92. S. N. Mohammada, J. Vac. Sci. Technol. B, 26: 1993 (2008). https://doi.org/10.1116/1.3002486
93. S. L. Zhang and M. Ostling, Crit. Rev. Solid State Mater. Sci., 28: 1 (2003). https://doi.org/10.1080/10408430390802431
94. N. Gao, T. Gao, X. Yang, X. Dai, W. Zhou, A. Zhang, and Ch. M. Lieber, PNAS, 113, No. 51: 14633 (2016). https://doi.org/10.1073/pnas.1625010114
95. K. Lee, I. Kim, S. Kim, D. Jeong, J. Kim, H. Rhim, J. Ahn, S. Park, and H. Choi, Nanoscale Res. Lett., 9: 56 (2014). https://doi.org/10.1186/1556-276X-9-56
96. N. Yang, G. Zhang, and B. Li, Nano Lett., 8, No. 1: 276 (2008). https://doi.org/10.1021/nl0725998
97. L. Laffont, A. Lonjon, E. Dantras, Ph. Demont, and C. Lacabanne, Mater. Lett., 65, No. 23: 3411 (2011). https://doi.org/10.1016/j.matlet.2011.07.082
98. V. P. Kurbatsky and V. V. Pogosov, Phys. Rev. B, 81, No. 15: 155404 (2010). https://doi.org/10.1103/PhysRevB.81.155404
99. J. M. Weisse, A. M. Marconnet, D. R. Kim, P. M. Rao, M. A Panzer, K. E. Goodson, and X. Zheng, Nanoscale Res. Lett., 7, No. 1: 554 (2012). https://doi.org/10.1186/1556-276X-7-554
100. K. Takahashi, T. Kanno, A. Sakai, H. Tamaki, H. Kusada, and Y. Yamada, Sci. Rep., 3: 1501 (2013). https://doi.org/10.1038/srep01501
101. Y. Yang, S. C. Kung, D. K. Taggart, C. Xiang, F. Yang, M. A. Brown et al., Nano Lett., 8, No. 8: 2447 (2008). https://doi.org/10.1021/nl801442c
102. Z. Xia and W. Wen, Nanomaterials (Basel), 6, No. 1: 19 (2016). https://doi.org/10.3390/nano6010019
103. J. L. Cuya Huaman, I. Urushizaki, and B. Jeyadevan, J. Nanomater., 2018: 1698357 (2018). https://doi.org/10.1155/2018/1698357
104. Sh. Wang, Zh. Shan and H. Huang, Adv. Sci. (Weinh), 4, No. 4: 1600332 (2017). https://doi.org/10.1002/advs.201600332
105. W. Lee, J. Chang, S. Ju, M. Weng, and C. Lee, Nanoscale Res. Lett., 6: 352 (2011). https://doi.org/10.1186/1556-276X-6-352
106. Y. Cui and Ch. M. Lieber, Science, 291, No. 5505: 851 (2001). https://doi.org/10.1126/science.291.5505.851
107. Y. Cui, X. Duan, J. Hu, and Ch. M. Lieber, J. Phys. Chem. B, 104, No. 22: 5213 (2000). https://doi.org/10.1021/jp0009305
108. L. de Smet, D. Ullien, M. Mescher, and E. J. Sudho lter, Nanowires-Implementations and Applications (Ed. A. Hashim) (IntechOpen: 2011). https://doi.org/10.5772/23861
109. F. Patolsky, G. Zheng, and Ch. M. Lieber, Protocols, 1: 1711 (2006). https://doi.org/10.1038/nprot.2006.227
110. J. Hahm and Ch. M. Lieber, Nano Lett., 4, No. 1: 51 (2004); https://doi.org/10.1021/nl034853b. https://doi.org/10.1021/nl034853b
111. Y. Cui, Q. Wei, H. Park, and Ch. M. Lieber, Science, 293, No. 5533: 1289 (2001). https://doi.org/10.1126/science.1062711
112. J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Zh. Wang, Nano Lett., 8, No. 9: 3035 (2008). https://doi.org/10.1021/nl802367t
113. J. Yao, H. Yan, and Ch. M. Lieber, Nat. Nanotech., 8: 329 (2013). https://doi.org/10.1038/nnano.2013.55
114. F. Gu, L. Zhang, X. Yin, and L. Tong, Nano Lett., 8, No. 9: 2757 (2008). https://doi.org/10.1021/nl8012314
115. B. Wang and H. Haick, ACS App. Mater. Int., 5, No. 6: 2289 (2013). https://doi.org/10.1021/am4004649
116. Y. Paska, T. Stelzner, O. Assad, U. Tisch, S. Christiansen, and H. Haick, ACS Nano, 6, No. 1: 335 (2011). https://doi.org/10.1021/nn203653h
117. D. Tom nek and R. J. Enbody, Science and Application of Nanotubes (Berlin: Springer: 2006). 118. S. V. Rotkin, Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices (Berlin: Springer: 2005). https://doi.org/10.1007/3-540-28075-8
119. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (London: Imperial College Press: 1998). https://doi.org/10.1142/p080
120. M. J. O'Connell, Carbon Nanotubes: Properties and Applications (Boca Raton, USA: CRC Press: 2006). 121. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Berlin: Springer: 2001). 122. M. Meyyappan, Carbon Nanotubes Science and Applications (Boca Raton, USA: CRC Press: 2004). https://doi.org/10.1201/9780203494936
123. I.-Y. Jeon, D. W. Chang, N. A. Kumar, and J.-B. Baek, Carbon Nanotubes - Polymer Nanocomposites. Pt. 2. Preparation and Characterization of Polymer Composites with CNTs. Ch. 5. Functionalization of Carbon Nanotubes (Ed. S. Yellampalli) (Rijeka, Croatia: InTech: 2011), p. 91. https://doi.org/10.5772/18396
124. Sh. Mallakpour and S. Soltanian, RSC Advances, 6, No. 111: 109916 (2016). https://doi.org/10.1039/C6RA24522F
125. Y. Sun, K. Fu, Y. Lin, and W. Huang, Acc. Chem. Res., 35, No. 12: 1096 (2002). https://doi.org/10.1021/ar010160v
126. E. L. Gui, L.-J. Li, K. Zhang, Y. Xu, X. Dong, X. Ho, P.-S. Lee, J. Kasim, Z. X. Shen, and J. A. Roger, J. Am. Chem. Soc., 129, No. 46: 14427 (2007). https://doi.org/10.1021/ja075176g
127. K. Balasubramanian and M. Burghard, Anal. Bioanal. Chem., 385: 452 (2006). https://doi.org/10.1007/s00216-006-0314-8
128. C.-M. T lmaciu and M. C. Morris, Front Chem., 3: 59 (2015). https://doi.org/10.3389/fchem.2015.00059
129. M. E. Roberts, M. C. LeMieux, and Zh. Bao, ACS Nano, 3, No. 10: 3287 (2009). https://doi.org/10.1021/nn900808b
130. B. Stephen and B. H. Chen, J. Food Drug Anal., 24, No. 1: 15 (2016). https://doi.org/10.1016/j.jfda.2015.05.001
131. S. F. Liu, A. R. Petty, G. T. Sazama, and T. M. Swager, Angew. Chem. Int., 54, No. 22: 6554 (2015). https://doi.org/10.1002/anie.201501434
132. B. S. Shim, W. Chen, C. Doty, C. Xu, and N. A. Kotov, Nano Lett., 8, No. 12: 4151 (2008). https://doi.org/10.1021/nl801495p
133. J. St b, D. Furin, P. Fechner, G. Proll, L. M. Soriano-Dotor, C. Ruiz-Palomero, M. Valc rcel, and G. Gauglitz, Optical Sensors, 10231: 10231O (2017). https://doi.org/10.1117/12.2267412
134. I. V. Zaporotskova, N. P. Boroznina, Y. N. Parkhomenko, and L. V. Kozhitov, Modern Electronic Materials, 2, Iss. 4: 95 (2016). https://doi.org/10.1016/j.moem.2017.02.002
135. C. Farrera, F. T. And n, and N. Feliu, ACS Nano, 11, No. 11: 10637 (2017). https://doi.org/10.1021/acsnano.7b06701
136. S. Kruss, A. J. Hilmer, J. Zhang, N. F. Reuel, B. Mu, and M. S. Strano, Adv. Drug Deliv. Rev., 65, No. 15: 1933 (2013). https://doi.org/10.1016/j.addr.2013.07.015
137. P. Hu, C. Z. Huang, Y. F. Li, J. Ling, Y. L. Liu, L. R. Fei, and J. P. Xie, Anal. Chem., 80, No. 5: 1819 (2008). https://doi.org/10.1021/ac702187y
138. K. Jensen, K. Kim, and A. Zettl, Nat. Nanotech., 3: 533 (2008). https://doi.org/10.1038/nnano.2008.200
139. T. Natsuki, Electronics, 6, No. 3: 56 (2017). https://doi.org/10.3390/electronics6030056
140. J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, Nat. Nanotech., 7, No. 5: 301 (2012). https://doi.org/10.1038/nnano.2012.42
141. W.-D. Zhang and W.-H. Zhang, J. Sensors, 2009: 160698 (2009). https://doi.org/10.1155/2009/160698
142. A. Boyd, I. Dube, G. Fedorov, M. Paranjape, and P. Barbara, Carbon, 69: 417 (2014). https://doi.org/10.1016/j.carbon.2013.12.044
143. T. Helbling, R. Pohle, L. Durrer, C. Stampferc, C. Romana, A. Jungena, M. Fleischerb, and C. Hierolda, Sens. Actuators B: Chem., 132, No. 2: 491 (2008). https://doi.org/10.1016/j.snb.2007.11.036
144. C. Piloto, F. Mirri, E. A. Bengio, M. Notarianni, B. Gupta, M. Shafiei, and M. Pasquali, Sens. Actuators B: Chem., 227: 128 (2016). https://doi.org/10.1016/j.snb.2015.12.051
145. Y. Zhou, Y. Jiang, G. Xie, X. Du, and H. Tai, Sens. Actuators B: Chem., 191: 24 (2014). https://doi.org/10.1016/j.snb.2013.09.079
146. Y. J. Kwon, H. G. Na, S. Y. Kang, S.-W. Choi, S. S. Kim, and H. W. Kim, Sens. Actuators B: Chem., 227: 157 (2016). https://doi.org/10.1016/j.snb.2015.12.024
147. J. Kim, S.-W. Choi, J.-H. Lee, Y. Chung, and Y. T. Byun, Sens. Actuators B: Chem., 228: 688 (2016). https://doi.org/10.1016/j.snb.2016.01.094
148. L. C. Wang, K. T. Tang, I. J . Teng, C. T. Kuo, C. L. Ho, H. W. Kuo, T. H. Su, S. R. Yang, G. N. Shi, and C. P. Chang, Sensors (Basel), 11, No. 8: 7763 (2011). https://doi.org/10.3390/s110807763
149. Z. Hou, D. Xu, and B. Cai, Appl. Phys. Lett., 89, No. 21: 213502 (2006). https://doi.org/10.1063/1.2392994
150. J. T. W. Yeow and J. P. M. She, Nanotech., 17, No. 21: 5441 (2006). https://doi.org/10.1088/0957-4484/17/21/026
151. E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, Science, 307, No. 5717: 1942 (2005). https://doi.org/10.1126/science.1109128
152. S. Chopra, A. Pham, J. Gaillard, A. Parker, and A. M. Rao, Appl. Phys Lett., 80, No. 24: 4632 (2002). https://doi.org/10.1063/1.1486481
153. S. Chopra, K. McGuire, N. Gothard, A. M. Rao, and A. Pham, Appl. Phys Lett., 83, No. 11: 2280 (2003). https://doi.org/10.1063/1.1610251
154. P. Shankar, J. Bosco, and B. Rayappan, ScienceJet, 4: 126 (2015). 155. R. Kumar, S. A. Imam, and M. R. Khan, MAUSAM Journal, 1, No. 2: 177 (2009). 156. M. Suchea, N. Katsarakis, S. Christoulakis, M. Katharakis, T. Kitsopoulos, and G. Kiriakidis, Anal. Chim. Acta, 573-574, No. 28: 9 (2006). https://doi.org/10.1016/j.aca.2006.04.057
157. R. Deokate, K. Y. Rajpure, and C. D. Lokhande, Metal Oxide Thin Films Gas Sensor (Riga, Latvia: Scholars' Press: 2014). 158. Ch. M. Hung, D. Th. Le, and N. V. Hieu, JSAMD, 2, No. 3: 263 (2017). https://doi.org/10.1016/j.jsamd.2017.07.009
159. E. Comini and G. Sberveglieri, Materials Today, 13, Nos. 7-8: 36 (2010). https://doi.org/10.1016/S1369-7021(10)70126-7
160. E. Comini, C. Baratto, G. Faglia, and M. Ferroni, J. Mater. Res., 28, No. 21: 2911 (2013). https://doi.org/10.1557/jmr.2013.304
161. A. Karakuscu and M. Ozenbas, J. Nanosci. Nanotechnol., 8, No. 2: 901 (2008). https://doi.org/10.1166/jnn.2008.D027
162. R. Sui and P. Charpentier, Chem. Rev., 112, No. 6: 3057 (2012). https://doi.org/10.1021/cr2000465
163. M. Breedon, P. Spizzirri, M. Taylor, J. du Plessis, D. McCulloch, J. Zhu, L. Yu, Zh. Hu, C. Rix, W. Wlodarski, and K. Kalantarzadeh, Cryst. Growth Des., 10, No. 1: 430 (2010). https://doi.org/10.1021/cg9010295
164. M. Imran, N. Motta, and M. Shafiei, Beilstein J. Nanotechnol., 9: 2128 (2018). https://doi.org/10.3762/bjnano.9.202
165. I. Kim and A. Rothschild, Polym. Adv. Technol., 22, No. 3: 318 (2011). https://doi.org/10.1002/pat.1797
166. K. Mondal and A. Sharma, RSC Adv., 6: 94595 (2016). https://doi.org/10.1039/C6RA21477K
167. S. Vallejos, F. Di Maggio, T. Shujah, and C. Blackman, Chemosensors, 4: 4 (2016). https://doi.org/10.3390/chemosensors4010004
168. A. Karn, N. Kumar, and S. Aravindan, J. Nanostruct., 7, No. 1: 64 (2017). https://doi.org/10.22052/jns.2017.01.008
169. F. Weiss, M. Audier, A. Bartasyte, D. Bellet, C. Girardot, C. Jimenez, J. Kreisel, S. Pignard, M. Salaun, and C. Ternon, Pure Appl. Chem., 81, No. 8: 1523 (2009). https://doi.org/10.1351/PAC-CON-08-08-10
170. M. Horprathum, P. Eiamchai, J. Kaewkhao, C. Chananonnawathorn, V. Patthanasettakul, S. Limwichean, N. Nuntawong, and P. Chindaudom, AIP Conf. Proc., 1617: 7 (2014). https://doi.org/10.1063/1.4897091
171. F. Hamelmann, J. Phys. Conf. Ser., 764, No. 1: 012001 (2016). https://doi.org/10.1088/1742-6596/764/1/012001
172. H. Gu, Z.Wang, and Y. Hu, Sensors, 12: 5517 (2012). https://doi.org/10.3390/s120505517
173. D.-F. Wang, J.-R. Liang, Ch.-Q. Li, W.-J. Yan, and M. Hu, Chin. Phys. B, 25, No. 2: 028102 (2016). https://doi.org/10.1088/1674-1056/25/2/028102
174. K.-Ch. Lee, Y.-J. Chiang, Y.-C. Lin, and F.-M. Pan, Sensors Actuat. B-Chem., 26: 457 (2016). https://doi.org/10.1016/j.snb.2015.12.011
175. A. K. Kaushik and Ch. K. Dixit, Nanobiotechnology for Sensing Applications: From Lab to Field (Boca Raton, USA: CRC Press: 2016). https://doi.org/10.1201/9781315366425
176. T.-J. Hsueh, Y.-W. Chen, Sh.-J. Chang, and S.-F. Wang, Sensors Actuat. B-Chem., 125, No. 2: 498 (2007). https://doi.org/10.1016/j.snb.2007.02.059
177. P. K. Guha, S. Santra, J. A. Covington, F. Udrea, and J. W. Gardner, Procedia, 25: 1473 (2011). https://doi.org/10.1016/j.proeng.2011.12.364
178. E. R Waclawik, J. Chang, A. Ponzoni, I. Concina, D. Zappa, E. Comini, N. Motta, G. Faglia, and G. Sberveglieri, Beilstein J Nanotechnol., 3: 368 (2012). https://doi.org/10.3762/bjnano.3.43
179. R. Wimmer-Teubenbacher, E. Lackner, J. Krainer, and S. Steinhauer, Nanomaterials and Synthesis, 1, No. 13: 817 (2016). https://doi.org/10.1557/adv.2016.241
180. M. M. Arafat, B. Dinan, S. A. Akbar, and A. S. M. A. Haseeb, Sensors, 12, No. 6: 7207 (2012). https://doi.org/10.3390/s120607207
181. Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, and T. Kawabat, Appl. Phys. Lett., 90: 173119 (2007). https://doi.org/10.1063/1.2732818
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement