Issues

 / 

2018

 / 

vol. 16 / 

Issue 4

 



Download the full version of the article (in PDF format)

M. M. Nishchenko, M. Ya. Shevchenko, V. I. Patoka, I. Ye. Galstyan, Yu. F. Sus’ka, and E. G. Len
«Kinetic Processes of Water-Molecules’ Adsorption–Desorption on Copper Surface under a High-Intensity Luminous Flux»
719–736 (2018)

PACS numbers: 42.79.Ek, 61.80.Ba, 68.43.-h, 68.43.Mn, 68.43.Nr, 68.43.Vx, 68.47.De

The adsorption–desorption kinetic processes with H2O molecules on the polished polycrystalline copper surface are investigated during external contactless heating by the reflex-lamp radiation and subsequent cooling of the sample after switching off the light source. The processes of thermal conductivity and radiation heat exchange codetermine a loss of energy absorbed by copper sample due to light irradiation and H2O adsorption. The modified non-stationary integral method for determination of the loss of energy consists in a measurement of sample temperature both in air and in different vacuum conditions. The massive Cu specimen covers the top of a hollow thin-walled steel socket. After preheating in a vacuum by external electromagnetic radiation to temperatures of 100–170?C and subsequent shutdown of radiation source, this sample shows, at the first stage, a cooling-down because of a heat removal and, at the second stage, a heating up on 7–21.5?C during 5–23 minutes due to heat-energy generation because of multimolecular adsorption of water on the inner and outer surfaces of the specimen. The heat power due to adsorption exceeds the primary energy flux by several times.

Keywords: adsorption–desorption of water, copper surface, luminous flux, heating/cooling kinetics in vacuum

https://doi.org/10.15407/nnn.16.04.719

References
1. G.-E. Germain, Heterogennyy Kataliz [Heterogeneous Catalysis] (Moscow: Izd. IL: 1961) (Russian translation).
2. Energeticheskie Resursy Skvoz' Prizmu Fotokhimii i Kataliza [Energy Resources through Photochemistry and Catalysis] (Ed. M. Gratzel) (Moscow: Mir: 1986) (Russian translation).
3. A. Lamb, W. Brey, and F. Fraser, Ind. Eng. Chem., 12: 213 (1920). https://doi.org/10.1021/ie50123a007
4. B. N. Dolgov, Kataliz v Organicheskoy Khimii (Leningrad: GNTIKhL: 1959) (in Russian).
5. J. N. Tiwari, R. N. Tiwari, and K. S. Kim, Progress in Materials Science, 57, No. 4: 724 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.003
6. Hu. Yang, Research Bulletin, 41: 1310 (2006). https://doi.org/10.1016/j.materresbull.2006.01.004
7. L. Huang, Solid State Sciences, 11: 129 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.04.013
8. K. L. Chopra and S. R. Das, Tonkoplenochnye Solnechnye Elementy [Thin Film Solar Cells] (Moscow: Mir: 1986) (Russian translation).
9. L. C. Bourne, P. Y. Yu, A. Zetti, and M. L. Cohen, Phys. Rev. B, 40, No. 16: 10973 (1989). https://doi.org/10.1103/PhysRevB.40.10973
10. Yu. P. Sukhorukov, N. N. Loshkaryova, A. S. Moskvin, and A. A. Samokhvalov, ZhETF, 108: 1821 (1995) (in Russian).
11. S. Ruhle, M. Shalom, and A. Zaban, Chem. Phys. Chem., 11: 2290 (2010). https://doi.org/10.1002/cphc.201000069
12. Y. Li, X. Y. Yang, Y. Feng, Z. Y. Yuan, and B. L. Su, Cristal Rev. in Solid State and Materials Sciences, 37, No. 1: 1 (2012). https://doi.org/10.1080/10408436.2011.606512
13. Y. K. Jeong and G. M. Choi, J. Phys. and Chem. Solids, 57: 81 (1996). https://doi.org/10.1016/0022-3697(95)00130-1
14. J. R. Anderson, Struktura Metallicheskikh Katalizatorov [Structure of Metallic Catalysts] (Moscow: Mir: 1978) (Russian translation).
15. A. M. Kuznetsov, Sorosovskiy Obrazovatelnyy Zhurnal, 6, No. 5: 45 (2000) (in Russian).
16. X. Deng, T. Herranz, Ch. Weis, H. Bluhm, and M. Salmeron, J. Phys. Chem. C, 112, Iss. 26: 9668 (2008). https://doi.org/10.1021/jp800944r
17. J. Hu, D. Li, J. G. Lu, and R. Wu, J. Phys. Chem. C, 114, Iss. 40: 17120 (2010). https://doi.org/10.1021/jp1039089
18. O. A. Esin and P. V. Gel'd, Fizicheskaya Khimiya Pirometallurgicheskikh Protsessov (Sverdlovsk: Gos. Nauchno-Tekhn. Izd. Liter. po Chernoy i Tsvetnoy Metallurgii: 1962) (in Russian).
19. F. F. Volkenshtein, Elektronnaya Teoriya Kataliza na Poluprovodnikakh [The Electronic Theory of Catalysis on Semiconductors] (Moscow: Gos. Izd-vo Fiz.-Mat. Lit.: 1960) (in Russian).
20. J. H. De Boer, Dinamicheskiy Kharakter Adsorbtsii [The Dynamical Character of Adsorption] (Moscow: Izd. IL: 1962) (Russian translation).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement