vol. 16 / 

Issue 4


Download the full version of the article (in PDF format)

N. A. Kurgan, L. I. Karbivska, V. L. Karbivskyy, and S. S. Smolyak
«Regularities of Formation of Electronic Structure of Nanodisperse Apatites of Calcium of Various Genealogy»
681–692 (2018)

PACS numbers: 07.85.Nc, 79.60.Jv, 81.05.Zx, 82.75.Fq, 82.80.Pv, 87.64.-t

Regularities of electronic-structure formation in the calcium hydroxyapatites of various genealogies are studied by means of the theoretical and spectral methods. The evolution of both valence bands and charge states of the atoms in the compounds is described. As found, the main features of the electronic structure of the examined compounds are the similarity of calcium K-spectra of nanodispersed apatite, which forms the base of bone tissue and synthetic calcium apatite, and the substantial localization of the calcium d-shell (in the inner region of the effective potential) that determines its atomic nature. Between samples of the biological and synthetic origins, there are differences in the chemical-bond nature, which can be explained by nonstoichiometry and, as a result, distortion of the PO4-tetrahedra or their displacement because of various substitutions.

Keywords: x-ray photoelectron spectroscopy, nanodispersed calcium hydroxyapatite, biological apatite, wave-function collapse, electronic structure

1. V. L. Karbovskiy and A. P. Shpak, Apatity i Apatitopodobnyye Soedineniya. Elektronnoye Stroenie i Svoistva (Kiev: Naukova Dumka: 2010) (in Russian).
2. S. N. Danilchenko, A. V. Koropov, I. Yu. Protsenko, B. Sulkio Cleff, and L. F. Sukhodub, Cryst. Res. Technol., 41, No. 3: 268 (2006).
3. A. P. Shpak, A. B. Brik, V. L. Karbovskiy, and L. G. Rosenfeld, Usp. Fiz. Met., 4, No. 4: 303 (2003).
4. L. Wang, Z. J. Henneman, E. Klein, and S. Weiner, Biointerphases, 1: 106 (2006).
5. M. J. Olszta, X. Cheng, S. S. Jee, R. Kumar, Yi-Y. Kim, M. J. Kaufman, E. P. Douglas, and L. B. Gower, Mater. Sci. Eng. R, 58, Nos. 3-5: 77 (2007).
6. B. S. Kasavina and V. P. Torbenko, Zhyzn' Kostnoy Tkani (Moscow: Nauka: 1979) (in Russian).
7. H. Zhou and J. Lee, Acta Biomaterialia, 7, No. 7: 2769 (2011).
8. P. Kalia, G. Vizcay-Barrena, J. P. Fan, A. Warley, L. Di Silvio, and J. Huang, J. R. Soc. Interface, 11, No. 93: 20140004 (2014).
9. X. Yang, Y. Li, X. Liu, R. Zhang, and Q. Feng, Stem Cells Int., 2018: 2036176 (2018).
10. P. Turon, L. J. del Valle, C. Alem n, and J. Puiggal , Appl. Sci., 7, No. 1: 60 (2017).
11. M. A. Blokhin, Metody Rentgenospektralnykh Issledovaniy (Moscow: Fizmatgiz: 1959) (in Russian).
12. V. I. Nefedov, Rentgenoelektronnaya Spektroskopiya Khimicheskikh Soedineniy (Moscow: Khimiya: 1984) (in Russian).
13. N. A. Kurgan, V. L. Karbivskyy, and V. Kh. Kasyanenko, Nanoscale Research Letters, 10, No. 41: (2015).
14. R. I. Karaziya, Usp. Fiz. Nauk, 135, No. 1: 79 (1981) (in Russian).
15. R. E. Ruus, A. A. Maiste, and Yu. A. Maksimov, Izv. AN SSSR, 46, No. 4: 789 (1982) (in Russian).
16. A. Maizel, H. Leonkhardt, and R. Sargan, Rentgenovskie Spektry i Khimicheskaya Svyaz' (Kiev: Naukova Dumka: 1981) (Russian translation).
17. M. A. Elyashevich, Atomnaya i Molekulyarnaya Spektroskopiya (Moscow: GIFML: 1962) (in Russian).
18. J. Emsley, J. Feeney, and L. Sutcliffe, Spektroskopiya YaMR Vysokogo Razresheniya (Moscow: Mir: 1968) (Russian translation). 19. S. Hayakawa, K. Tsuru, and H. Iida, Journal of the Ceramic Society of Japan, 104, No. 1215: 1000 (1996).
20. Y. Pan, Phosphorus Sulfur and Silicon and the Related Elements, 146, No. 1: 413 (1999).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement