vol. 16 / 

Issue 4


Download the full version of the article (in PDF format)

Yu. O. Kruglyak
«Physics of Nanotransistors: a 2D Electrostatics of Metal–Oxide–Semiconductor and Model of the Virtual Source»
599–631 (2018)

PACS numbers: 72.80.Ey, 85.30.De, 85.30.Tv, 85.40.Bh

The electrostatics of MOS is considered in detail. The 1D electrostatics bends zones, lowers the barrier and allows the flow of electrons to move from source to drain. The 2D electrostatics degrades electron transport in field-effect transistors by increasing the subthreshold swing and causing the DIBL, which, in turn, increases the output conductivity and reduces the threshold voltage in short-channel transistors. Quantitative accounting of the 2D electrostatics requires a numerical approach, but, at the same time, all the significant effects are physically understandable. The 2D electrostatics destroys the functioning of transistors and leads to: 1) a sub-threshold swing greater than the fundamental limit of 60 mV/decade; 2) the shift of the transfer characteristics, log10IDS ? VGS, to the left with increasing drain voltage (DIBL); 3) the threshold depending on the gate parameters and voltage on the drain; 4) low output resistance. When 2D electrostatic effects are strong, the gate loses control of the current, and the transistor undergoes punch-through. Since these effects are more evident in short-channel transistors, they are also called as short-channel effects. As transistors get smaller and smaller, the main challenge with circuitry is to control the short-channel effects. As a rule, numerical modelling is required. Returning to the equation for the current, we see that the dependence of the charge on the voltages in the location of the virtual source has a completely acceptable physical explanation. As for the speed in this equation, it will constructed an adequate physical picture of the transport phenomena in nanotransistors based on the generalized model LDL of the electron transport, and its connection with the traditional top-down approach is established.

Keywords: nanoelectronics, field effect transistor, MOSFET, 2D electrostatics, transistor metrics, transistor control, virtual source

1. Yu. A. Kruglyak, Nanosistemi, Nanomateriali, Nanotehnologii, 16, No. 2: 201 (2018) (in Russian).
2. Yu. A. Kruglyak, Nanosistemi, Nanomateriali, Nanotehnologii, 16, No. 2: 233 (2018) (in Russian).
3. Yu. A. Kruglyak, Nanosistemi, Nanomateriali, Nanotehnologii, 16, No. 3: 465 (2018) (in Russian).
4. R. F. Pierret, Semiconductor Device Fundamentals (New York: Addison Wesley: 1996).
5. B. Streetman and S. Banerjee, Solid State Electronic Devices (New York: Prentice Hall: 2005).
6. Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor (New York: Oxford Univ. Press: 2011).
7. Y. Taur and T. Ning, Fundamentals of Modern VLSI Devices (New York: Oxford Univ. Press: 2013).
8. D. Frank, Yuan Taur, and H.-S. Philip Wong, IEEE Device Research Conf. Technical Digest, 18-21 (1999).
9. D. Frank, Yuan Taur, and H.-S. Philip Wong, IEEE Electron Device Lett., 19: 385 (1998).
10. J. Wang, P. Solomon, and M. Lundstom, IEEE Trans. Electron Dev., 51: 1361 (2004).
11. Q. Xie, J. Xu, and Yu. Taur, IEEE Trans. Electron Dev., 59: 1569 (2012).
12. R. Koh, H. Kato, and H. Matsumoto, Jap. J. Appl. Phys., 35, Pt. 1, No 2B: 996 (1996).
13. R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Ridout, E. Bassous, and A. R. LeBlanc, IEEE J. Solid-State Circuits, 51: 256 (1974).
14. Ch. Hu, Modern Semiconductor Devices for Integrated Circuits (London: Pearson India: 2009).
15. Ch. Hu, What Else Besides FinFET?,
16. X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and Ch. Hu, International Electron Devices Meeting. Technical Digest, 67 (1999).
17. M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, Science, 306: 2057 (2004).
18. A. Khakifirooz, O. M. Nayfeh, and D. A. Antoniadis, IEEE Trans. Electron Dev., 56: 1674 (2009).
19. E. O. Johnson, RCA Review, 34: 80 (1973).
20. S. Datta, Lessons from Nanoelectronics: A New Perspective on Transport (Singapore: World Scientific: 2012).
21. M. Lundstrom and C. Jeong, Near-Equilibrium Transport. Fundamentals and Applications (Singapore: World Scientific: 2013).
22. Yu. O. Kruhliak and M. V. Strikha, Ukr. Fiz. Zhurn. Ohlyady, 10: 3 (2015) (in Ukrainian).
23. Yu. A. Kruglyak, Nanoehlektronika 'Snizu-Vverkh' (Odessa: TES: 2015) (in Russian).
24. S. Datta, Lessons from Nanoelectronics. Part A: Basic Concepts (Singapore: World Scientific: 2017).
25. M. Lundstrom, Fundamentals of Nanotransistors (Singapore: World Scientific: 2018);
26. D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Yuan Taur, and H.-S. Philip Wong, Proc. IEEE, 89: 259 (2001).
27. J. Appenzeller, Y.-M. Lin, J. Knoch, and Ph. Avouris, Phys. Rev. Lett., 93: 196805-1 (2004).
28. S. Salahuddin and S. Datta, Nano Lett., 8: 405 (2008).
29. G. Gildenblat, X. Li, W. Wu, H. Wang, A. Jha, R. van Langevelde, G. D. J. Smit, A. J. Scholten, and D. B. M. Klassen, IEEE Trans. Electron Dev., 53: 1979 (2006).
30. G. T. Wright, Electron Lett., 21: 221 (1985).
31. A. L. Steegen, R. Mo, R. Mann et al., International Electron Devices Meeting. Technical Digest, 64 (2005).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement