Issues

 / 

2018

 / 

vol. 16 / 

Issue 3

 



Download the full version of the article (in PDF format)

L. Matkovska, M. Iurzhenko, V. Demchenko, and Ye. Mamunya
«Structure and Thermophysical Properties of Polymer Composites Based on Oligomers of Various Molecular Weight»
547–558 (2018)

PACS numbers: 61.05.cf, 64.70.pj, 81.20.Fw, 81.70.Pg, 82.35.Lr, 83.80.Ab, 83.80.Tc

Various methods of structure modification, which are aimed to reducing crystallinity with maintaining stable mechanical properties throughout the operating temperature range, are used to increase the efficiency of polyethylene glycols. Systems based on amorphous (diglycidyl ether of polyethylene glycol DEG-1) and high crystalline (polyethylene glycol PEG) oligomers are synthesized. Structure and properties of the synthesized polymer systems are studied by methods of the wide-angle and small-angle x-ray scatterings, thermogravimetric analysis, and differential scanning calorimetry. According to the results of wide-angle x-ray scattering and differential scanning calorimetry, а degree of crystallinity of polyethylene glycol decreases with adding it and further increasing its content in the polymer systems. According to the results of thermogravimetric analysis, it is revealed that thermal destruction of PEG in the air atmosphere occurs above 170?C, while a sharp loss of weight in composites with polyethylene glycol is not observed at this temperature. According to the results of differential scanning calorimetry, the glass-transition temperature of composites together with the melting temperatures of the crystalline phase of polyethylene glycol (with an increase of its content) shift that indicates the presence of an interaction between DEG-1 and PEG.

Keywords: polymer system, epoxy oligomer, polyethylene glycol, heterogeneous structure, degree of crystallinity

https://doi.org/10.15407/nnn.16.03.547

References
1. B. P. Binks and R. Murakami, Nature Mater., 5, No. 11: 865 (2006); doi: 10.1038/nmat1757. https://doi.org/10.1038/nmat1757
2. L. Forny, Powder Technology, 189, No. 2: 263 (2009). https://doi.org/10.1016/j.powtec.2008.04.030
3. B. O. Carter, W. Wang, D. J. Adams, and A. I. Cooper, Langmuir, 26, No. 5: 3186 (2010); DOI: 10.1021/la903120p/. https://doi.org/10.1021/la903120p
4. V. V. Goncharuk, L. V. Dubrovina, and E. V. Makarova, J. Water Chem. Technol., 39, No. 6: 351 (2017). https://doi.org/10.3103/S1063455X17060078
5. V. I. Osipov, V. N. Sokolov, and N. A. Rumyantseva, Mikrostruktura Glinistykh Porod (Moscow: Nedra: 1989) (in Russian).
6. Yu. I. Tarasevich, Poverkhnostnyye Yavleniya na Dispersnykh Materialakh (Kyiv: Naukova Dumka: 2009) (in Russian).
7. J. C. Hindman, J. Chem. Phys., 44, No. 12: 4582 (1966). https://doi.org/10.1063/1.1726676
8. I. S. Chuang, D. R. Kinnej, and G. E. Maciel, J. Amer. Chem. Soc., 115, No. 19: 8695 (1993); DOI: 10.1021/ja00072a024. https://doi.org/10.1021/ja00072a024
9. O. V. Petrov and I. Furo, Progr. in NMR, 54, No. 2: 97 (2009). https://doi.org/10.1016/j.pnmrs.2008.06.001
10. D. T. Atkins, P. K kicheff, and O. Spalla, J.Colloid Interface Sci., 188, No. 1: 234 (1997). https://doi.org/10.1006/jcis.1996.4751
11. V. M. Gun'ko, V. V. Turov, V. M. Bogatyrev, V. I. Zarko, R. Leboda, E. V. Goncharuk, A. A. Novza, A. V. Turov, and A. A. Chuiko, Adv. Colloid. Interf. Sci., 118, Nos. 1-3: 125 (2005). https://doi.org/10.1016/j.cis.2005.07.003
12. V. M. Gun'ko, V. V. Turov, and P. P. Gorbyk, Voda na Mezhfaznoi Granitse (Kyiv: Naukova Dumka: 2009) (in Russian).
13. V. M. Gun'ko and V. V. Turov, Nuclear Magnetic Resonance Studies of Interfacial Phenomena (New York: Taylor&Francis: 2013). https://doi.org/10.1201/b14202
14. V. S. Erasov, M. Yu. Pletnev, and B. V. Pokid'ko, Colloid. J., 77, No. 5: 614 (2015). https://doi.org/10.1134/S1061933X15050075
15. D. O. Vivaldini, A. P. Luz, V. R. Salvinin, and V. C. Pandolfelli, Ceramics Int., 39, No. 5: 6005 (2013). https://doi.org/10.1016/j.ceramint.2013.01.007
16. R. Iler, Chemistry of Silica. Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (New York: J. Wiley: 1979).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement