Issues

 / 

2018

 / 

vol. 16 / 

Issue 3

 



Download the full version of the article (in PDF format)

H. A. Ilchuk, R. Yu. Petrus, A. I. Kashuba, I. V. Semkiv, and Eh. O. Zmiiovska
«Optical-Energy Properties of the Bulk and Thin-Film Cadmium Telluride (CdTe)»
519–533 (2018)

PACS numbers: 61.05.cp, 68.37.Hk, 68.55.J-, 71.15.Mb, 71.20.Nr, 73.20.At, 78.20.Ci

The results of the experimental and theoretical studies of the optical-energy properties of a single crystal and thin films of CdTe are presented. The synthesis, structural and optical studies of the CdTe single crystal and thin films deposited on the mica are performed. By the method of pseudopotential, the dynamics of parameters’ change of the electron subsystem in the CdTe crystal and films is theoretically studied. As established, the CdTe is characterized by direct band gap. Based on the density of states, the genesis of the conduction and valence bands is revealed. Using the Kramers–Kronig relations, the absorption and reflection spectra of the CdTe are obtained. Theoretical models and experimental data are in a good agreement.

Keywords: single crystal, thin film, band-energy structure, density of states, optical functions

https://doi.org/10.15407/nnn.16.03.519

References
1. M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, Prog. Photovoltaics Res. Appl., 26: 427 (2018). https://doi.org/10.1002/pip.3040
2. I. M. Dharmadasa, Sol. Energy Mater. Sol. Cells, 85: 293 (2005). https://doi.org/10.1016/j.solmat.2004.08.008
3. I. Dharmadasa, J. Roberts, and G. Hill, Sol. Energy Mater. Sol. Cells, 88: 413 (2005). https://doi.org/10.1016/j.solmat.2005.05.008
4. S. I. Krukovskyi, H. A. Ilchuk, R. S. Krukovskyi, I. V. Semkiv, E. O. Zmiiovska, and S. V. Tokarev, J. Nano- Electron. Phys., 10: 03025-1 (2018). https://doi.org/10.21272/jnep.10(3).03025
5. B. Kashyap and A. Datta, IEEE Trans. Electron Devices, 64: 2564 (2017). https://doi.org/10.1109/TED.2017.2692267
6. S. Krukovskyi, R. Krukovskyi, H. Ilchuk, E. Zmiiovska, and I. Semkiv, 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET) (IEEE: 2018), p. 462. https://doi.org/10.1109/TCSET.2018.8336241
7. O. I. Olusola, M. L. Madugu, and I. M. Dharmadasa, Mater. Chem. Phys., 191: 145 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.027
8. G. A. Il'chuk, V. V. Kusnezh, V. Yu. Rud', Yu. V. Rud', P. Yo. Shapowal, and R. Yu. Petrus', Semiconductors, 44, Iss. 3: 318 (2010). https://doi.org/10.1134/S1063782610030085
9. A. Morales-Acevedo, Sol. Energy Mater. Sol. Cells, 95: 2837 (2011). https://doi.org/10.1016/j.solmat.2011.05.045
10. D. E. Swanson, J. R. Sites, and W. S. Sampath, Sol. Energy Mater. Sol. Cells, 159: 389 (2017). https://doi.org/10.1016/j.solmat.2016.09.025
11. I. S. Yahia, F. Yakuphanoglu, S. Chusnutdinow, T. Wojtowicz, and G. Karczewski, Curr. Appl. Phys., 13: 537 (2013). https://doi.org/10.1016/j.cap.2012.09.018
12. J. Gutowski, K. Sebald, and T. Voss, New Data and Updates for III-V, II-VI and I-VII Compounds (Ed. U. R ssler). Landolt-B rnstein - Group III Con-densed Matter (Numerical Data and Functional Relationships in Science and Technology) (Berlin-Heidelberg: Springer: 2010), vol. 44C, p. 287. https://doi.org/10.1007/978-3-540-92140-0_209
13. M. Cardona and D. L. Greenaway, Phys. Rev., 131: 98 (1963). https://doi.org/10.1103/PhysRev.131.98
14. S. Bloom and T. K. Bergstresser, Solid State Commun., 6: 465 (1968). https://doi.org/10.1016/0038-1098(68)90056-2
15. E. Ghahramani, D. J. Moss, and J. E. Sipe, Phys. Rev. B, 43: 9700 (1991). https://doi.org/10.1103/PhysRevB.43.9700
16. J. Ren, L. Fu, G. Bian, M. Wong, T. Wang, G. Zha, W. Jie, T. Miller, M. Z. Hasan, and T.-C. Chiang, Phys. Rev. B, 91: 235303 (2015). https://doi.org/10.1103/PhysRevB.91.235303
17. G. A. Ilchuk, J. Non. Cryst. Solids, 352: 4255 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.07.019
18. G. A. Il'chuk, I. V. Kurilo, R. Y. Petrus', and V. V. Kus'nezh, Inorg. Mater., 50: 559 (2014). https://doi.org/10.1134/S0020168514060077
19. W. Kraus and G. Nolze, J. Appl. Crystallogr., 29: 301 (1996). https://doi.org/10.1107/S0021889895014920
20. W. Kohn and L. J. Sham, Phys. Rev., 140: A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
21. D. Vanderbilt, Phys. Rev. B, 41: 7892 (1990). https://doi.org/10.1103/PhysRevB.41.7892
22. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13: 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
23. A. Danylov, H. Ilchuk, and R. Petrus, Acta Physica Polonica A, 133, Iss. 4: 981(2018). https://doi.org/10.12693/APhysPolA.133.981
24. H. B. Schlegel, J. Comput. Chem., 3: 214 (1982). https://doi.org/10.1002/jcc.540030212
25. M. Ya. Rudysh, , M. G. Brik, V. Yo. Stadnyk, R. S. Brezvin, P. A. Shchepanskyi, A. O. Fedorchuk, O. Y. Khyzhun, I. V. Kityk, and M. Piasecki, Phys. B: Condens. Matter, 528: 37 (2018). https://doi.org/10.1016/j.physb.2017.10.085
26. A. Majchrowski, M. Chrunik, M. Rudysh, M. Piasecki, K. Ozga, G. Lakshminarayana, and I. V. Kityk, J. Mater. Sci., 53: 1217 (2018). https://doi.org/10.1007/s10853-017-1554-z
27. A. I. Kashuba, M. Piasecki, O. V. Bovgyra, V. Yo. Stadnyk, P. Demchenko, A. Fedorchuk, A. V. Franiv, and B. Andriyevsky, Acta Phys. Pol. A, 133: 68 (2018). https://doi.org/10.12693/APhysPolA.133.68
28. M. Chrunik, A. Majchrowski, K. Ozga, M. Ya. Rudysh, I. V. Kityk, A. O. Fedorchuk, V. Yo. Stadnyk, and M. Piasecki, Current Applied Physics, 17, Iss. 8: 1100 (2017). https://doi.org/10.1016/j.cap.2017.05.001
29. P. M. Yakibchuk, O. V. Bovgyra, and I. V. Kutsa, J. Phys. Stud., 19: 17021 (2015).
30. P. M. Yakibchuk, O. V. Bovgyra, L. R. Toporovska, and I. V. Kutsa, J. Nano-Electron. Phys., 9: 02030-1 (2017).
31. G. A. Il'Chuk, I. V. Kurilo, R. Y. Petrus', V. V. Kus'nezh, and T. N. Stan'ko, Inorg. Mater., 49, Iss. 4: 329 (2013). https://doi.org/10.1134/S0020168513030059
32. P. E. Van Camp and V. E. Van Doren, Solid State Commun, 91: 607 (1994). https://doi.org/10.1016/0038-1098(94)90556-8
33. Cadmium Telluride (CdTe) Band Structure (Eds. O. Madelung, U. R ssler, and M. Schulz). Vol. 41B. Landolt-B rnstein - Group III Condensed Matter (II-VI and I-VII Compounds; Semimagnetic Compounds) (Berlin-Heidelberg: Springer-Verlag: 1999). https://doi.org/10.1007/10681719_621
34. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
35. R. Swanepoel, J. Phys. E, 16: 1214 (1983). https://doi.org/10.1088/0022-3735/16/12/023
36. G. A. Il'Chuk, I. V. Kurilo, R. Yu. Petrus', and V. V. Kus'nezh, Inorg. Mater., 50, Iss. 6: 559 (2014). https://doi.org/10.1134/S0020168514060077
37. M. Gajdo , K. Hummer, G. Kresse, J. Furthm ller, and F. Bechstedt, Phys. Rev. B, 73: 045112 (2006). https://doi.org/10.1103/PhysRevB.73.045112
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement