Issues

 / 

2018

 / 

vol. 16 / 

Issue 1

 



Download the full version of the article (in PDF format)

S. Sh. Kahramanov and N. M. Abdullayev
«Nonequilibrium Processes During Self-Intercalation in Layered Crystals of the \(A^V_2B^{VI}_3\) Type»
141–152 (2018)

PACS numbers: 61.05.cp, 66.30.Pa, 68.35.bg, 68.35.Dv, 68.35.Ja, 68.37.Ps, 71.20.Tx

A correlation is revealed between the processes of formation of bulk nanoislands with a significant deviation of the concentration of vacancies from the equilibrium one and with a presence of migration of impurity atoms from unstable regions into the interlayer space Te(1)–Te(1) \(A^V_2B^{VI}_3\)<Cu> during the self-intercalation process. Changes in both the thermal e.m.f. and the electrical conduction in the \(Bi_2Te_3\)<Cu> system at room temperature with time as well as the formation of interlayer nanoislands confirm the instability of impurity centres within the layered \(A^V_2B^{VI}_3\)-type<easily-diffusing impurity> systems. A structural model is proposed that takes into account the migration of copper-impurity atoms from unstable vacancy regions (repeller zones) to the (0001)\(A^V_2B^{VI}_3\)<Cu> surface (attractor zone).

Keywords: defects, crystals, mass transfer, dynamic systems, attractor, repeller

https://doi.org/10.15407/nnn.16.01.141

References
1. T. Chen, Q. Chen, K. Schouteden, W. Huang, X. Wang, Zh. Li, F. Miao, X. Wang, Zh. Li, B. Zhao, Sh. Li, F. Song, J. Wang, B. Wang, C. Van Haesendonck, and G. Wang, Nat. Commun., 5: 5022 (2014)s. https://doi.org/10.1038/ncomms6022
2. J. Bludska, I. Jakubec, C. Drasar, P. Lostak, and J. Horak, Philosophical Magazine, 87, No. 2: 325 (2007). https://doi.org/10.1080/14786430600990337
3. J. Bludska, S. Karamazov, J. Navratil, I. Jakubec, and J. Horak, Solid State Ionics, 171: 251 (2004). https://doi.org/10.1016/j.ssi.2004.03.010
4. B. M. Gol'tsman, V. A. Kutasov, and L. N. Luk'yanova, Fiz. Tverd. Tela, 51, No. 4: 706 (2009) (in Russian).
5. M. A. Korzhuev and L. D. Ivanova, Neorgan. Materialy, 42, No. 7: 789 (2006) (in Russian).
6. F. K. Aleskerov and S. Sh. Kagramanov, Metallofiz. Noveishie Tekhnol., 30, No. 11: 1465 (2008) (in Russian).
7. S. Sh. Kahramanov, Neorgan. Materialy, 1: 17 (2008) (in Russian).
8. S. Sh. Kahramanov, F. K. Aleskerov, K. Sh. Kahramanov, S. A. Nasibova, S. B. Bagirov, Termoelektriki i Ikh Primeneniya: Sbornik Trudov (2014), p. 1 (in Russian).
9. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, Advanced Materials, 19, No. 8: 1043 (2007). https://doi.org/10.1002/adma.200600527
10. F. K. Aleskerov, K. Sh. Kahramanov, and S. Sh. Kahramanov, Neorgan. Materialy, 48, No. 5: 536 (2012) (in Russian).
11. A. A. Shklyayev and M. Ichikava, Uspekhi Fiz. Nauk, 178, No. 2: 139 (2008) (in Russian). https://doi.org/10.3367/UFNr.0178.200802b.0139
12. Ya. E. Geguzin and Yu. S. Kaganovskiy, Diffuzionnyye Protsessy na Poverkhnosti Kristalla (Moscow: Energoatomizdat: 1984) (in Russian).
13. I. A. Zel'tser, A. S. Karabanov, and E. N. Moos, Fiz. Tverd. Tela, 47, No. 11: 1921 (2005) (in Russian).
14. G. M. Neumann, W. Hirschwald, and I. N. Stranski, J. Phys. Chem. Solids, Suppl.: 619 (1967).
15. B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhuhovickii, Termodinamika i Kinetika Diffuzii v Tverdyh Telakh [Thermodynamics and Kinetics of Diffusion in Solids] (Moscow: Metallurgiya: 1974) (in Russian).
16. W. Ebeling, Obrazovanie Struktur pri Neobratimykh Protsessakh [Formation of Structures at the Irreversible Processes] (Moscow: Mir: 1979) (Russian translation).
17. G. Nicolis and I. Prigogine, Samoorganizatsiya v Neravnovesnykh Sistemakh [Self-Organisation in Nonequilibrium Systems] (Moscow: Mir: 1979) (Russian translation).
18. R. M. Kronover, Fraktaly i Khaos v Dinamicheskikh Sistemakh. Osnovy Teorii [Fractals and Chaos in Dynamic Systems. Fundamentals of the Theory] (Moscow: Postmarket: 2000) (Russian translation).
19. M. R. Schroeder, Fraktaly, Khaos, Stepennyye Zakony [Fractals, Chaos, Power Laws] (Izhevsk: RHD: 2001) (Russian translation).
20. M. Eigen and P. Schuster, Gipertsikl. Printsipy Organizatsii Makromolekul [The Hypercycle: A Principle of Organization of Macromolecules] (Moscow: Mir: 1982) (Russian translation).
21. E. V. Oleshko, Eh. I. Veliyulin, V. N. Kozyrenko, and S. Sh. Kahramanov, Fiz. Tekhn. Polupr., 25, No. 6: 1073 (1991) (in Russian).
22. A. Yu. Kolosov, D. N. Sokolov, N. Yu. Sdobnyakov, P. V. Komarov, S. S. Bogdanov, A. A. Bogatov, and V. S. Myasnichenko, Journal of Nano- and Electronic Physics, 9, No. 5: 05042 (2017). https://doi.org/10.21272/jnep.9(5).05042
23. M. A. Asoro, Nanotechnology, 21: 025701-1 (2010). https://doi.org/10.1088/0957-4484/21/2/025701
24. A. N. Bazulev, V. M. Samsonov, and N. Yu. Sdobnyakov, Russian Journal of Physical Chemistry A, 76, No. 11: 1872 (2002).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement