Issues

 / 

2018

 / 

vol. 16 / 

Issue 1

 



Download the full version of the article (in PDF format)

O. V. Sumariuk, V. F. Romankevich, and I. M. Fodchuk
«Prospects of Fabrication of Ultrahigh-Performance Concrete Composites by means of Introduction of Polyfunctional Nanomodifiers»
103–115 (2018)

PACS numbers: 61.05.cp, 62.20.-x, 62.23.Pq, 68.37.Hk, 81.05.Rm, 81.20.Ev, 83.80.Ab

A literature analysis is carried out for the research results concerning the promising compositions of ultrahigh-strength concrete composites fabricated by means of the introduction of various nanomodifiers and formulations. It is indicated on the ways of fabrication of concrete composites having excess of strength and density, in particular, due to both the decrease in the ratio of water to the binding material below the theoretically necessary one and the number of air voids within the transition zone between the cement matrix and the large aggregate particles. The characteristics of fillers and their effect on the packing density of grains of the cement matrix and its micro- and nanostructures are presented.

Keywords: ultrahigh-strength concrete, fluidizing agent, nanomodifiers, microsilica, quartz powder

https://doi.org/10.15407/nnn.16.01.103

References
1. V. N. Kalashnikov and S. V. Ananiev, Stroitelnyye Materialy, 6: 59 (2015) (in Russian).
2 M. Behloul, G. Chanvillard, P. Casanova, and G. Orange, Fire Resistance of Ductal, Ultra High Performance Concrete: Proceedings (Osaka, Japan: 2002).
3. R. Runova, I. Rudenko, and V. Troyan, Ibausil. Internationale Baustofftagung (Weimar, September 12-15, 2012) (Weimar: 2012), Tagunsbericht, 2: 2-0082.
4 R. F. Runova, I. I. Rudenko, and V. V. Troyan, Stroitelstvo, Materialovedenie, Mashinostroenie, 56: 379 (2010) (in Russian).
5 RILEM Proceedings, PRO 53, RILEM Pbs., S.A.R.L. (Cachan, France, June 2007) (Eds. H. W. Reinhardt and A. E. Naaman), p. 518.
6 D. M. Roy, G. R. Gouda, and A. Bobrowski, Cement and Concrete Research, 2: 349 (1972). https://doi.org/10.1016/0008-8846(72)90075-0
7 P. Francisco, F. Benboudjema, P. Rougeau, and J. M. Torrenti, Ultra High Performance Concrete for Prestressed Elements-Interest of Creep Prediction, Colloque BFUP 2009 (Marseille: 2009).
8. M. Schmidt, R. Krelaus, T. Teichmann, T. Leutbecher, and E. Fehling, Beton und Stahlbetonbau, 102, No. 10: 681 (2017). https://doi.org/10.1002/best.200700576
9. D. Stephan, R. Krelaus, and M. Schmidt, Proceedings of the 2nd International Symposium on Ultra High Performance Concrete (Kassel, Germany: Kassel University Press: 2008).
10. M. P. Gorsky, P. P. Maksimyak, and A. P. Maksimyak, Appl. Opt., 51, No. 10: 208 (2012). https://doi.org/10.1364/AO.51.00C208
11 E. N. Kislovskii, V. B. Molodkin, S. I. Olikhovskii, E. G. Len, B. V. Sheludchenko, S. V. Lizunova, T. P. Vladimirova, E. V. Kochelab, O. V. Reshetnyk, V. V. Dovganyuk, I. M. Fodchuk, T. V. Lytvynchuk, and V. P. Kladko, Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 7, No. 3: 523 (2013). https://doi.org/10.1134/S1027451013030270
12 DIN EN 197-1, Zement-Teil 1: Zusammensetzung, Anforderungen und Konformit tskriterien von Normalzement; Deutsche Fassung (EN 197-1: 2000, Ausgabe: Nov. 2000).
13 K. P. Metha and P. J. M. Monteiro, Concrete-Microstructure, Properties and Materials. Second Edition (USA: 1993).
14 T. Reschke, Der Einfluss der Granulometrie der Feinstoffe auf die Gef geentwicklung und die Festigkeit von Beton (Verein Deutscher Zementwerke e.V: 2001).
15. Q. Ye, D. Kong, and R. Chen, Construction and Building Materials, 21: 539 (2007). https://doi.org/10.1016/j.conbuildmat.2005.09.001
16. K. Wille, A. E. Naaman, S. El-Tawil, and G. J. Parra-Montesinos, Materials and Structures (August 27th, 2011).
17. E. Sakai, K. Yamada, and A. Ohta, Journal of Advanced Concrete Technology, 1, No. 1: 16 (2013). https://doi.org/10.3151/jact.1.16
18. Methods of Test for Mortar for Masonry, Part 3: Determination of Consistence of Fresh Mortar (German version EN 1015-3: 1999 +A1: 2004).
19. H. Li, H. Gang, X. Jie, J. Yuan, and J. Ou, Composites: Part B, 35, No. 2: 185 (2004). https://doi.org/10.1016/S1359-8368(03)00052-0
20. X. He and X. Shi, Transportation Research Record: Journal of the Transportation Research Board, 2070, Iss. 1: 13 (2008). https://doi.org/10.3141/2070-03
21. T. Ji, Cement and Concrete Research, 35, No. 10: 1943 (2005). https://doi.org/10.1016/j.cemconres.2005.07.004
22. M. Schmidt, E. Fehling, T. Teichmann, K. Bunje, and R. Bornemann, Ultra-Hochfester Beton: Perspektiven f r die Betonfertig-teilindustrie. In: Beton + Fertigteiljahrbuch (G tersloh: Bauverlag: 2003).
23. R. Bornemann and E. Fehling, Ultrahochfester Beton - Entwicklung und Verhalten (Leipziger Massivbau-Seminar: 2000).
24. M. Ramezanianpour, M. Moravej Jahromi, R. Elmaili, Mechanical Properties and Durability of Concrete Incorporating Nanosilica (Japan: 2008).
25. P. Aitcin and P. Richard, Proc. 4th International Symposium on Utilization of High Strength Concrete (Paris: 1996).
26. M. Collepardi, A. Marcialis, and R. Turriziani, II Cemento, 67: 157 (1970).
27. M. Cherezy, V. Malet, and L. Frouin, Cement and Concrete Research, 25: 1491 (1995). https://doi.org/10.1016/0008-8846(95)00143-Z
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement