Issues

 / 

2018

 / 

vol. 16 / 

Issue 1

 



Download the full version of the article (in PDF format)

L. M. Boichyshyn, O. M. Hertsyk, M. O. Kovbuz, T. G. Pereverzeva, and T. M. Mika
«Kinetics of Crystallization of Amorphous Al–Ni–REM Alloys»
071–082 (2018)

PACS numbers: 61.05.cp, 61.43.Dq, 64.70.dg, 81.07.Dc, 81.10.Aj, 81.30.Fb, 81.70.Pg

The kinetic parameters of crystallization of the amorphous metallic alloys (AMA) based on aluminium alloyed with rare earth metals (REM) are determined by means of the differential scanning calorimetry (DSC). As shown, the aluminium-based AMA crystallize during three stages. Based on the DSC data and with using the Kissinger, Avrami and Ozava models, the activation energies for the first stage of crystallization are calculated. As established, the Al–REM–Ni alloys crystallize by means of the kinetically controlled mechanism. Replacement of Y with Gd leads to a decrease of the temperature of nanocrystallization by 20–40 K, and substitution with Dy leads to an increase of the temperature of nucleation and growth of nanocrystals. As determined according to the Matusita model, at constant temperature of phase transition, the growth of nanocrystals in the Al–Ni–REM AMA system takes place along the 1D direction and linearly (due to the interphase control).

Keywords: amorphous alloys, aluminium, nanocrystallization, Matusita model

https://doi.org/10.15407/nnn.16.01.071

References
1. T. Mika, S. Mudryi, B. Kotur, and V. Nosenko, Mater. Sci., 45, No. 1: 550 (2009).
2. A. Chrobak, V. Nosenko, G. Haneczok, L. Boichyshyn, and M. Karolus, J. Non-Cryst. Solids, 357, No. 1: 4 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.10.009
3. F. Audebert, M. Galano, R. C. Trive o, H. Kasama, M. Peres, C. Kiminami, W. J. Botta, and C. Bolfarini, J. Alloys Compd., 577: 650 (2013). https://doi.org/10.1016/j.jallcom.2013.06.162
4. P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani, Thermochim. Acta, 652: 119 (2017). https://doi.org/10.1016/j.tca.2017.03.017
5. V. K. Nosenko, E. A. Segida, A. A. Nazarenko, T. N. Moiseeva, S. A. Kostyria, E. A. Sviridova, and V. I. Tkach, Metallofiz. Noveishie Tekhnol., 37, No. 1: 49 (2015) (in Russian).
6. S. Ahmadi, H. R. Shahverdi, and S. S. Saremi, J. Mater. Sci. Technol., 27, No. 6: 497 (2011). https://doi.org/10.1016/S1005-0302(11)60097-2
7. V. K. Nosenko, Visnyk NAS of Ukraine, 4: 68 (2015) (in Ukrainian). https://doi.org/10.15407/ptt2015.13.037
8. E. Bobko, D. P och, M. Wiater, T. Wojtowicz, and J. Wr bel, Opto-Electron. Rev., 25, No. 1: 65 (2017). https://doi.org/10.1016/j.opelre.2017.04.005
9. K. Stan-G owi ska, . Rogal, A. G ral, A. Wierzbicka-Miernik, J. Wojewoda-Budka, N. Schell, and L. Lity ska Dobrzy ska, J. Mater. Sci., 52, No 13: 7794 (2017). https://doi.org/10.1007/s10853-017-1011-z
10. S. I. Mudryi and Yu. O. Kulyk, Nanosistemi, Nanomateriali, Nanotehnologii, 7, No. 4: 1227 (2009) (in Ukrainian).
11. L. M. Boichyshyn, M.-O. M. Danyliak, B. Ya. Kotur, and T. M. Mika, Fiz. Khim. Tverd. Tila, 18, No. 1: 122 (2017) (in Ukrainian). https://doi.org/10.15330/pcss.18.1.122-128
12. M. Avrami, J. Chem. Phys., 7: 1103 (1939). https://doi.org/10.1063/1.1750380
13. L. Boichyshyn, Yu. Kubishtal', A. Budn'ok, and M. Kovbuz, Mater. Sci., 46, No. 5: 599 (2011). https://doi.org/10.1007/s11003-011-9329-1
14. L. Heireche and M. Belhadji, Chalcogenide Lett., 4, No. 2: 23 (2007).
15. J. A. Augis and J. E. Bennett, J. Therm. Analysis, 13: 283 (1978). https://doi.org/10.1007/BF01912301
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement