vol. 16 / 

Issue 1


Download the full version of the article (in PDF format)

O. V. Maruzhenko, Ye. P. Mamunya, S. Pruvost, and G. Boiteux
«Electrophysical and Thermomechanical Properties of the Segregated Polymeric Systems Containing Carbon Fillers»
041–054 (2018)

PACS numbers: 62.23.Pq, 62.25.De, 72.80.Tm, 81.05.Lg, 81.05.Qk, 81.05.ue, 83.85.Vb

The electrical and mechanical properties of polymer composites with the carbon micro- (anthraciteŚA), nano- (grapheneŚGr), and hybrid filler (graphene/anthraciteŚGr/A) with the statistical and segregated distribution of filler in the polymer matrix are studied. As shown, the value of the percolation threshold for a segregated system is of the order of magnitude lower than for a statistical distribution, and for systems containing nanosize filler, it is much lower than for a composite with microfiller. The hybrid grapheneľanthracite filler (Gr/A) shows a percolation threshold below the rule-calculated mixture. Synergism of the influence of the micro- and nanofillers is explained by the bridging effect, which is caused by the arrangement of nanoparticles in the gaps between the microparticles of filler. The tangent of mechanical losses in the region of the melting temperature forms a peak with an increase in the filler concentration in composites with single filler, which can be explained by the increase in losses due to friction of the particles. In systems with the hybrid filler, this effect is less because the mixture of micro- and nanoparticles in the carcass wall reduces the mechanical influence of adjacent particles.

Keywords: polymer composites, carbon micro- and nanofillers, segregated systems, electrical conductivity, mechanical losses

1. P. Huan, Z. Yi-Chuan, C. Tao, Z. Bao-Qing, and L. Zhong-Ming, Appl. Phys. Let., 96, No. 25: 1907 (2010).
2. M. Knite, K. Ozols, J. Zavickis, V. Tupureina, I. Klemenoks, and R. Orlovs, J. Nanosci. and Nanotech., 9, No. 6: 3587 (2009).
3. A. C. Clark, S. P. Ho, and M. LaBerge, Tribol. Int., 39, No. 11: 1327 (2006).
4. Ye. Mamunya, E. Privalko, Ye. Lebedev, V. Privalko, F. Balta Calleja, and P. Pissis, Macromol. Symp., 169, No. 1: 297 (2001).<297::AID-MASY297>3.0.CO;2-Z
5. G. Gelves, M. Al-Saleh, and U. Sundararaj, J. Mater. Chem., 21, No. 3: 829 (2011).
6. T. Deplancke, O. Lame, S. Barrau, K. Ravi, and F. Dalmas, Polymer, 111: 204 (2017).
7. R. P. Kusy, J. Appl. Phys., 48, No. 12: 5301 (1977).
8. S. Miriyala, Y. Kim, L. Liu, and J. Grunlan, Macromol. Chem. Phys., 209: 2399 (2008).
9. H. Hu, G. Zhang, L. Xiao, H. Wang, Q. Zhang, and Z. Zhao, Carbon, 50, No. 12: 4596 (2012).
10. J. Gao, Z. Li, Q. Meng, and Q. Yang, Mater. Lett., 62, No. 20: 3530 (2008).
11. J. Thomassin, C. J r me, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, Mater. Sci. Eng. R: Rep., 74, No.7: 211 (2013).
12. T. Gong, S. P. Peng, R. Y. Bao, W. Yang, B. H. Xie, and M. B. Yang, Compos. Part B: Eng., 99: 348 (2016).
13. N. George, P. K. Bipinbal, B. Bhadran, A. Mathiazhagan, and R. Joseph, Polymer, 112: 264 (2017).
14. T. J. Yoo, E. B. Hwang, and Y. G. Jeong, Compos. Part A: Appl. Sci. Manuf., 91: 77 (2016).
15. P. G. Ren, S. Y. Hou, F. Ren, Z. P. Zhang, Z. F. Sun, and L. Xu, Compos. Part A: Appl. Sci. Manuf., 90: 13 (2016).
16. S. Pusz, U. Szeluga, B. Nagel, S. Czajkowska, H. Galina, and J. Strzezik, Polym. Compos., 36: 336 (2014).
17. Ye. Mamunya, M. Iurzhenko, E. Lebedev, V. Levchenko, O. Chervakov, O. Matkovska, and O. Sverdlikovska, Electroactive Polymer Materials (Kyiv: Alpha-Reklama: 2013) (in Ukrainian).
18. D. Stauffer and A. Aharony, Introduction to Percolation Theory (London: CRC Press: 1994).
19. N. Lebovka, M. Lisunova, Y. P. Mamunya, and N. Vygornitskii, J. Phys. D: Appl. Phys., 39, No. 10: 2264 (2006).
20. P. M. Kogut and J. P. Straley, J. Phys. C: Solid State Phys., 12, No. 11: 2151 (1979).
21. Y. Mamunya, A. Boudenne, N. Lebovka, L. Ibos, Y. Candau, and M. Lisunova, Compos. Sci. Technol., 68, No. 9: 1981 (2008).
22. D. S. McLachlan, C. Chiteme, W. D. Heiss, and J. Wu, Phys. B: Condens. Matter, 338, Nos. 1-4: 261 (2003).
23. V. Levchenko, Y. Mamunya, G. Boiteux, M. Lebovka, P. Alcouffe, G. Seytre, and E. Lebedev, Eur. Polym. J., 47, No. 7: 1351 (2011).
24. E. P. Mamunya, V. V. Davidenko, and E. V. Lebedev, Polym. Compos., 16, No. 4: 319 (1995).
25. U. Szeluga, B. Kumanek, and B. Trzebicka, Compos. Part A: Appl. Sci. Manuf., 73: 204 (2015).
26. P. C. Ma, M. Y. Liu, H. Zhang, S. Q. Wang, R. Wang, K. Wang, Y. K. Wong, B. Z. Tang, S. H. Hong, K. W. Paik, and J. K. Kim, ACS Appl. Mater. Interfaces, 1, No. 5: 1090 (2009).
27. M. H. Al-Saleh, Synth. Met., 209: 41 (2015).
28. D. I. Chukov, A. A. Stepashkin, A. V. Maksimkin, V. V. Tcherdyntsev, S. D. Kaloshkin, K. V. Kuskov, and V. I. Bugakov, Compos. Part B, 76: 79 (2015).
29. A. Mierczynska, M. Mayne-L'Hermite, G. Boiteux, and J. K. Jeszka, J. Appl. Polym. Sci., 105: 158 (2007).
30. M. A. Pegoretti, C. Migliaresi, and G. Marom, Compos. Sci. Technol., 60: 1181 (2000).
31. Z. You and D. Li, Mater. Lett., 112: 197 (2013).
32. R. F. Landel and L. E. Nielsen, Mechanical Properties of Polymers and Composites. Second Edition (Boca Raton, Florida: CRC Press: 1993).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2019 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement