Issues

 / 

2018

 / 

vol. 16 / 

Issue 1

 



Download the full version of the article (in PDF format)

Î. V. Ìykhailenko, Yu. I. Prylutskyy, ². V. Komarov, À. V. Strungar, Î. O. Ìykhailenko, and V. L. Osetskyi
«A Molecular Container for Anti-Aromatic System Based on Double-Walled Carbon Nanotube: in Silico Study»
023–030 (2018)

PACS numbers: 78.40.Ri, 81.05.ub, 82.20.Wt, 82.30.Nr, 87.15.ak, 87.15.ap

There has been studied the formation of a ‘Host–Guest’ type carcerand with a double-walled carbon nanotube (DWCNT) as a ‘host’ and an unstable anti-aromatic cyclobutadiene as a ‘guest’. By employing the methods of MM?, ÐÌ3 and Monte Carlo, there has been investigated the positioning of cyclobutadiene molecules in a DWCNT depending on intercalant concentration and temperature. At that, the deformation vibrations of the DWCNT crystal grate do not exceed 0.017 nm, and the vibrations of the intercalant molecules do not exceed 0.025 nm, that provides for configuration and conformation stability of the studied nanosystem. When initially heated from 0 to ??283 K, the system energy grows gradually, then rises sharply between 290–300 K and 380–400 K, then, with the temperature growth, it reaches the plateau, which proves its high stability up to ??430 K. There have been calculated UV-spectrum of a DWCNT depending on the intercalant concentration and association constant of the ‘DWCNT–intercalant’ nanosystem.

Keywords: double-walled carbon nanotube, cyclobutadiene, intercalation, modelling, association constant

https://doi.org/10.15407/nnn.16.01.023

References
1. I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai, and H. Shinohara, Phys. Rev. Lett., 96: 057001 (2006). https://doi.org/10.1103/PhysRevLett.96.057001
2. A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S. D. Shandakov, G. Lolli, D. E. Resasco, M. Choi, D. Tom nek, and E. I. Kauppinen, Nat. Nanotechnol., 2: 156 (2007). https://doi.org/10.1038/nnano.2007.37
3. Q. Liu, R. Wencai, Z.-G. Chen, L. Yin, F. Li, H. Cong, and H.-M. Cheng, Carbon, 47: 731 (2009). https://doi.org/10.1016/j.carbon.2008.11.005
4. I. V. Ovsiyenko, T. Len, L. Matzui, Yu. Prylutskyy, P. Eklund, F. Le Normand, U. Ritter, and P. Scharff, Physica E, 37: 78 (2007). https://doi.org/10.1016/j.physe.2006.06.007
5. G. E. Grechnev, V. A. Desnenko, A. V. Fedorchenko, A. S. Panfilov, Yu. A. Kolesnichenko, L. Yu. Matzui, M. I. Grybova, Yu. I. Prylutskyy, U. Ritter, and P. Scharff, Low Temp. Phys., 36: 1086 (2010). https://doi.org/10.1063/1.3530422
6. U. Ritter, P. Scharff, G. E. Grechnev, V. A. Desnenko, A. V. Fedorchenko, A. S. Panfilov, Yu. I. Prylutskyy, and Yu. A. Kolesnichenko, Carbon, 49: 4443 (2011). https://doi.org/10.1016/j.carbon.2011.06.039
7. U. Ritter, N. G. Tsierkezos, Yu. I. Prylutskyy, L. Yu. Matzui, V. O. Gubanov, M. M. Bilyi, and M. O. Davydenko, J. Mater. Sci., 47, No. 5: 2390 (2012). https://doi.org/10.1007/s10853-011-6059-6
8. T. Len, I. Ovsiienko, L. Matzui, I. Berkutov, I. Mirzoiev, Yu. Prylutskyy, V. Andrievskii, I. Mirzoiev, Yu. Komnik, G. Grechnev, Yu. Kolesnichenko, R. Hayn, and P. Scharff, Phys. Status Solidi B, 252, No. 6: 1402 (2015). https://doi.org/10.1002/pssb.201451657
9. O. P. Matyshevska, A. Yu. Karlash, Ya. V. Shtogun, Y. V. Benilov, A. Y. Kirgizov, K. O. Gorchinskyy, E. V. Buzaneva, Y. I. Prylutskyy, and P. Scharff, Mater. Sci. Engineer. C, 15: 249 (2001). https://doi.org/10.1016/S0928-4931(01)00309-5
10. T. Durkop, B. M. Kim, and M. S. Fuhrer, J. Phys: Condensed Matter, 16, No. 18: 553 (2004). https://doi.org/10.1088/0953-8984/16/18/R01
11. O. Mykhailenko, D. Matsui, Yu. Prylutskyy, F. Normand, P. Eklund, and P. Scharff, J. Mol. Model., 13, No. 1: 283 (2007). https://doi.org/10.1007/s00894-006-0129-8
12. O. V. Mykhailenko, Yu. I. Prylutskyy, I. V. Komarov, A. V. Strungar, and N. G. Tsierkezos, Mat.-wiss. u. Werkstofftech., 47, Nos. 2-3: 203 (2016). https://doi.org/10.1002/mawe.201600477
13. O. V. Mykhailenko, Yu. I. Prylutskyy, I. V. Komarov, and A. V. Strunhar, Nanoscale Res. Lett., 11: 128 (2016).
14. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge, UK: Cambridge University Press: 1995).
15. J. Tersoff, Phys. Rev., 39: 5566 (1989). https://doi.org/10.1103/PhysRevB.39.5566
16. S. Dorfman, K. C. Mundim, D. Fuks, A. Berner, and D. E. Ellis, Mat. Sci. and Eng., 15: 191 (2001). https://doi.org/10.1016/S0928-4931(01)00308-3
17. P. Qureshi, R. Varshney, and S. Singh, Spectrochim Acta A, 50: 1789 (1994). https://doi.org/10.1016/0584-8539(94)80184-3
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement