vol. 16 / 

Issue 1


Download the full version of the article (in PDF format)

M. V. Manilo
«Influence of Buffer Solutions on both the Electrokinetic Potential of Multilayer Carbon Nanotubes and the Adsorption of Glycine by Them»
013–022 (2018)

PACS numbers: 81.05.ub, 81.16.Fg, 82.39.Wj, 82.45.Tv, 87.64.Ee, 87.85.Qr, 87.85.Rs

The impact of buffer solutions on both the electrokinetic potential of carbon nanotubes (NT) and the adsorption of glycine is studied. Buffer solutions at relatively low concentrations (up to 10?2 M) maintain the medium pH and the zeta potential of NT at constant values. A further increase in the concentration of buffer solutions leads to a decrease in the magnitude of the ?-potential due to the compression of the double electrical layer. As found, the addition of acetate buffer solution inhibits the dissociation of the functional NT groups, while the presence of the phosphate and borate buffer solutions increases the negative value of the ?-potential of NT due to adsorption of anions on the NT surface. As shown, the pH has a significant effect not only on the ?-potential of NT, but also on the glycine adsorption maximum.

Keywords: buffer solutions, electrokinetic potential, carbon nanotubes, adsorption

1. S. M. S. Murshed and C. A. N. de Castro, Renew. Sustain. Energy Rev., 37: 155 (2014).
2. Y. H. Li, Y. M. Zhao, W. B. Hu, I. Ahmad, Y. Q. Zhu, X. J. Peng, and Z. K. Luan, J. Phys. Conf. Ser., 61: 698 (2007).
3. X. Liu, M. Wang, S. Zhang, and B. Pan, J. Environ. Sci., 25: 1263 (2013).
4. Q. Wang and B. Arash, Comput. Mater. Sci., 82: 350 (2014).
5. J. Chen, Z. H. Zhu, Q. Ma, L. Li, V. Rudolph, and G. Q. Lu, Catal. Today, 148: 97 (2009).
6. Z. Han and A. Fina, Prog. Polym. Sci., 36: 914 (2011).
7. C. de las Casas and W. Li, J. Power Sources, 208: 74 (2012).
8. A. V. Herrera-Herrera, M. A. Gonzalez-Curbelo, J. Hernandez-Borges, and M. A. Rodriguez-Delgado, Anal. Chim. Acta, 734: 1 (2012).
9. F. A. Gutierrez, M. D. Rubianes, and G. A. Rivas, J. Electroanal. Chem., 765: 16 (2016).
10. K. K. Reza, S. Srivastava, S. K. Yadav, and A. M. Biradar, Mater. Lett., 126: 126 (2014).
11. B. Sarkar, S. Mandal, Y. F. Tsang, P. Kumar, K.-H. Kim, and Y. S. Ok, Sci. Total Environ., 612: 561 (2018).
12. H. Huang, T. Chen, X. Liu, and H. Ma, Anal. Chim. Acta, 852: 45 (2014).
13. M. Ghaedi, S. Naderi, M. Montazerozohori, F. Taghizadeh, and A. Asghari, Arab. J. Chem., 10: S2934 (2017).
14. M. Loginov, N. Lebovka, and E. Vorobiev, J. Colloid Interface Sci., 365: 127 (2012).
15. K. Lee, J.-H. Kwon, S. Moon, W.-S. Cho, B.-K. Ju, and Y.-H. Lee, Mater. Lett., 61: 3201 (2007).
16. B. Enayatpour, M. Rajabi, M. Yari, S. M. R. Mirkhan, F. Najafi, O. Moradi, A. K. Bharti, S. Agarwal, and V. K. Gupta, J. Mol. Liq., 231: 566 (2017).
17. K. Lou, Z. Zhu, H. Zhang, Y. Wang, X. Wang, and J. Cao, Chem. Biol. Interact., 243: 54 (2016).
18. M. V. Manilo, Nanosistemi, Nanomateriali, Nanotehnologii, 13, No. 1: 25 (2015) (in Russian).
19. M. Manilo, N. Lebovka, and S. Barany, Colloids Surfaces A: Physicochem. Eng. Aspects, 462: 211 (2014).
20. A. Albert and E. P. Serjeant, Konstanty Ionizatsii Kislot i Osnovaniy [The Ionization Constants of Acids and Bases: A Laboratory Manual] (Moscow: Khimiya: 1964) (Russian translation).
21. N. B. Salech, L. D. Pfefferle, and M. C. Melech, Environ. Sci. Technol., 42: 7963 (2008).
22. M. Elimelech and C. R. O'Melia, Colloids and Surfaces, 44: 165 (1990).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2019 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement