Âûïóñêè

 / 

2017

 / 

òîì 15 / 

âûïóñê 2

 



Ñêà÷àòü ïîëíóþ âåðñèþ ñòàòüè (â PDF ôîðìàòå)

A. V. Khomenko, D. S. Troshchenko, L. S. Metlov, P. E. Trofimenko
«Features of the Phase Kinetics of Metals’ Fragmentation at the Severe Plastic Deformation»
203–220 (2017)

PACS numbers: 05.65.+b, 05.70.Ln, 61.72.Cc, 61.72.Lk, 61.72.Mm, 62.20.F-, 64.30.Ef

The process of metals’ fragmentation during severe plastic deformation (SPD) is described within the scope of the nonequilibrium evolutional thermodynamics. It is investigated using two-defect’ approach, which takes into account the densities of both grain boundaries and dislocations. The phase portraits, which represent the kinetics of nonequilibrium variables in the process of formation of stationary submicrocrystalline or nanocrystalline structures, are constructed. The influence of relaxation times on phase dynamics of system nonequilibrium variables is studied. As shown, with approaching the direct or inverse adiabatic approximation, the system demonstrates universal kinetic behaviour. The formation of singular sections called as ‘mainstreams’ is revealed. As found out, the process of metals’ fragmentation or alloys’ one during SPD is carried out in two stages, which represent the fast relaxation to singular sections and the slow movement over them.


Key words: grain boundary, dislocation, phase transition, limiting structure, internal energy.

https://doi.org/10.15407/nnn.15.02.0203

REFERENCES

1. V. M. Segal, V. I. Reznikov, V. I. Kopylov, D. A. Pavlik, and V. F. Malyshev, Protsessy Plasticheskogo Strukturoobrazovaniya Metallov (Minsk: Novyye Tekhnologii: 1994) (in Russian).
2. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci., 53: 893 (2008).
https://doi.org/10.1016/j.pmatsci.2008.03.002
3. H. Nakayma, K. K. Tsuchiya, and M. Umemoto, Scr. Mater., 44, Nos. 8-9: 1781 (2001).
https://doi.org/10.1016/S1359-6462(01)00740-0
4. J. Y. Huang, Y. T. Zhu, X. Z. Liao, and R. Z. Valiev, Philos. Mag. Lett., 84, No. 3: 183 (2004).
https://doi.org/10.1080/09500830310001657353
5. F. X. Zhang and W. K. Wang, J. Alloy Comp., 240, Nos. 1-2: 256 (1996).
6. L. S. Metlov, Phys. Rev. E, 90, No. 2: 022124 (2014).
https://doi.org/10.1103/PhysRevE.90.022124
7. A. V. Khomenko, D. S. Troshchenko, and L. S. Metlov, Condens. Matter Phys., 18, No. 3: 33004 (2015).
https://doi.org/10.5488/CMP.18.33004
8. A. V. Khomenko, D. S. Troshchenko, D. V. Boyko, and M. V. Zaharov, Zh. Nano- Elektron. Fiz. [J. Nano- Electron. Phys.], 7, No. 1: 01039 (2015) (in Russian).
9. A. V. Khomenko, D. S. Troshchenko, K. P. Khomenko, and I. O. Solonar, Proceedings of the International Conference 'Nanomaterials: Applications and Properties', 5, No. 1: 01PCSI07 (2016).
10. L. S. Metlov, Neravnovesnaya Evolyutsionnaya Termodinamika i Eyo Prilozheniya [Nonequilibrium Evolution Thermodynamics and Its Applications] (Donetsk: Noulidge: 2014) (in Russian).
11. G. A. Malygin, Phys. Solid State, 44, No. 11: 2072 (2002).
https://doi.org/10.1134/1.1521458
12. A. A. Mazilkin, B. B. Straumal, S. G. Protasova, O. A. Kogtenkova, R. Z. Valiev, Phys. Solid State, 49, No. 5: 868 (2007).
https://doi.org/10.1134/S1063783407050113
13. A. D. Pogrebnjak, A. A. Bagdasaryan, I. V. Yakushchenko, V. M. Beresnev, Russ. Chem. Rev., 83, No. 11: 1027 (2014).
https://doi.org/10.1070/RCR4407
14. I. A. Birger and R. R. Mavlyutov, Soprotivlenie Materialov (Moscow: Nauka: 1986) (in Russian).
15. L. S. Metlov and V. N. Varyukhin, Fiz. Tekhn. Vysokikh Davleniy, 22, No. 2: 7 (2012) (in Russian).
16. L. S. Metlov, Vestnik DonGU, Ser. A: Estestvennyye Nauki [Bulletin of the DonNU. Ser A: Natural Sciences], 2: 144 (2009) (in Russian).
17. R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, Vestnik UGATU, 17, No. 4: 81 (2013) (in Russian).
18. I. G. Brodova, Zhurnal SFU. Tekhnika i Tekhnologii [Journal of SibFU.
Engineering and Technologies], 8, No. 4: 519 (2015) (in Russian).
19. A. V. Khomenko and I. A. Lyashenko, Tech. Phys., 55, No. 1: 26 (2010).
https://doi.org/10.1134/S1063784210010056
20. D. S. Troshchenko and A. V. Khomenko, Abstr. Int. Conf. 'Nanotechnologies' (Oct. 24-27, 2016) (Tbilisi: GTU: 2016), p. 208.
21. A. V. Khomenko and I. A. Lyashenko, Zhurnal Fizychnykh Doslidzhen' [Journal of Physical Studies], 11, No. 3: 268 (2007) (in Ukrainian).
22. A. Yamashita, D. Yamaguchi, Z. Horita, and T. G. Langdon, Mater. Sci. Eng.: A, 287, No. 1: 100 (2000).
https://doi.org/10.1016/S0921-5093(00)00836-4
23. V. I. Sokolenko, A. V. Mats, and V. A. Mats, Fiz. Tekhn. Vysokikh Davleniy, 23, No. 2: 96 (2013) (in Russian).
24. A. S. Zel'tser, T. K. Soboleva, and A. E. Filippov, JETP, 81, No. 1: 193 (1995).
25. A. I. Olemskoi and A. V. Khomenko, JETP, 83, No. 6: 1180 (1996).
26. A. I. Olemskoi, A. V. Khomenko, and D. O. Kharchenko, Physica A: Statistical Mechanics and Its Applications, 323: 263 (2003).
https://doi.org/10.1016/S0378-4371(02)01991-X
27. A. I. Olemskoi and A. V. Khomenko, Phys. Rev. E, 63: 036116 (2001).
https://doi.org/10.1103/PhysRevE.63.036116
28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Statistical Physics (London: Butterworth: 1999), vol. 5.
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement