|
||||||||||||||||||||||||
Ñêà÷àòü ïîëíóþ âåðñèþ ñòàòüè (â PDF ôîðìàòå)
L. G. Babich, S. G. Shlykov, A. M. Kushnarova, O. A. Esypenko, and S. O. Kosterin Mitochondria are known to be ‘power plants’ of cells, and thus, affect the biology of cells in general. A key factor in the mitochondria functioning is the polarization of the inner membrane. So, the search of effectors, which are able to modify the level of polarization of the inner mitochondrial membrane and the concentration of ionized Ca in the matrix of these organelles, is important from both theoretical and practical points of view. Ñalix[4]arenes, due to their ability to form complexes with biologically important molecules and ions, can influence the course of various biochemical processes. As shown, the calix[4]arene chalcone amides C-136 and C-137 increase the polarization of myometrial mitochondria membranes and ionized-Ca concentration in the matrix of these organelles. The degree of calix[4]arene chalcone amides’ influence on the ionized-Ca concentration within the matrix of mitochondria depends on Ñà2+-accumulating activity of the mitochondria, namely, if the mitochondria accumulate Ca2? more actively, there is the greater calix[4]arene chalcone amides’ impact. As suggested, the calix[4]arene chalcone amides C-136 and C-137 might be useful when mitochondria membrane potential and ionized-Ca concentration corrections are required. Key words: calix[4]arene, polarization of mitochondria membranes, ionizedCa concentration within the mitochondria matrix. https://doi.org/10.15407/nnn.15.01.0193 REFERENCES 1. B. Orlikova, D. Tasdemir, F. Golais, M. Dicato, and M. Diederich, Genes Nutr., 6, No. 2: 125 (2011). https://doi.org/10.1007/s12263-011-0210-5 2. D. K. Mahapatra and S. K.Bharti, Life Sci., 148: No. 154:72 (2016). https://doi.org/10.1016/j.lfs.2016.02.048 3. B. Zhou and C. Xing, Med. Chem. (Los Angeles), 5, No. 8: 388 (2015). 4. A. J. Leon-Gonzalez, N. Acero, D. Munoz-Mingarro, I. Navarro, and C. Martin-Cordero, Curr. Med. Chem., 22, No. 30: 3407 (2015). https://doi.org/10.2174/0929867322666150729114829 5. S. Zhang, T. Li, Y. Zhang, H. Xu, Y. Li, X. Zi, H. Yu, J. Li, C-Y. Jin, and H.-M. Liu, Toxicol Appl. Pharmacol., 30977: 86 (2016). 6. M. A. Klyachina, V. I. Boyko, A. V. Yakovenko, L. G. Babich, S. G. Shlykov, S. O. Kosterin, V. P. Khilya, and V. I. Kalchenko, J. Incl. Phenom. Macrocycl. Chem., 60, Nos. 1-2: 131 (2008). https://doi.org/10.1007/s10847-007-9361-9 7. F. Arnaud-Neu, E. M. Collins, M. Deasy, G. Ferguson, S. J. Harris, B. Kaitner, A. J. Lough, M. A. McKervey, and E. Marques, J. Am. Chem. Soc., 111, No. 23: 8681 (1989). https://doi.org/10.1021/ja00205a018 8. P. Mollard, J. Mironneau, T. Amedee, and C. Mironneau, Am. J. Physiol., 250, No. 1, Pt. 1: C47 (1986). https://doi.org/10.1152/ajpcell.1986.250.1.C47 9. S. A. Kosterin, N. F. Bratkova, and M. D. Kurskii, Biokhimiya, 50, No. 8: 1350 (1985) (in Russian). 10. M. M. Bradford, Anal Biochem., 72: 248 (1976). https://doi.org/10.1006/abio.1976.9999 11. G. Grynkiewicz, M. Poenie, and R. Y. Tsien, J. Biol. Chem., 260, No. 6: 3440 (1985). 12. Y. N. Antonenko, A. V. Avetisyan, D. A. Cherepanov, D. A. Knorre, G. A. Korshunova, O. V. Markova, S. M. Ojovan, I. V. Perevoshchikova, A. V. Pustovidko, T. I. Rokitskaya, I. I. Severina, R. A. Simonyan, E. A. Smirnova, A. A. Sobko, N. V. Sumbatyan, F. F. Severin, and V. P. Skulachev, J. Biol. Chem., 286, No. 20: 17831 (2011). https://doi.org/10.1074/jbc.M110.212837 13. A. S. Divakaruni and M. D. Brand, Physiology (Bethesda), 26, No. 3: 192 (2011). https://doi.org/10.1152/physiol.00046.2010 14. M. L. Olson, S. Chalmers, and J. G. McCarron, Biochem. Soc. Trans., 40, No. 1: 158 (2012). https://doi.org/10.1042/BST20110705 15. G. Di Benedetto, D. Pendin, E. Greotti, P. Pizzo, and T. Pozzan, J. Physiol., 592: 305 (2014). https://doi.org/10.1113/jphysiol.2013.259135 16. L. G. Babich, S. G. Shlykov, L. A. Borisova, and S. A. Kosterin, Biokhimiya, 59, No. 8: 1218 (1994). 17. L. G. Babich, S. G. Shlykov, A. M. Kushnarova, and S. O. Kosterin, Ukr. Biochem. J., 88, No. 4: 5 (2016). 18. R. Rodik, V. Boiko, O. Danylyuk, K. Suwinska, I. Tsymbal, N. Slinchenko, L. Babich, S. Shlykov, S. Kosterin, J. Lipkowski, and V. Kalchenko, Tetrahedron Lett., 46, No. 43: 7459 (2005). https://doi.org/10.1016/j.tetlet.2005.07.069 19. S. B. Nimse and T. Kim, Chem. Soc. Rev., 42, No. 1: 366 (2013). https://doi.org/10.1039/C2CS35233H 20. V. V. Trush, S. G. Kharchenko, V. Y. Tanchuk, V. I. Kalchenko, and A. I. Vovk, Org. Biomol. Chem., 13, No. 33: 8803 (2015). https://doi.org/10.1039/C5OB01247C 21. S. G. Shlykov, L. G. Babich, N. M. Slichenko, R. V. Rodik, V. I. Boyko, V. I. Kal'chenko, and S. O. Kosterin, Ukrains'kyi Biokhimichnyi Zhurnal, 79, No. 4: 28 (1999) (in Ukrainian). |
||||||||||||||||||||||||
|