Âûïóñêè

 / 

2017

 / 

òîì 15 / 

âûïóñê 1

 



Ñêà÷àòü ïîëíóþ âåðñèþ ñòàòüè (â PDF ôîðìàòå)

N. D. Shcherban’ and S. M. Filonenko
«Synthesis, Properties, and Applications of Functionalized Carbon Nanostructures»
113–131 (2017)

PACS numbers: 61.43.Gt, 61.48.-c, 68.37.Lp, 68.43.-h, 78.30.Na, 81.05.U-, 82.80.Pv

Porous carbon materials functionalized with heteroatoms are obtained by methods of the bulk and matrix carbonization of sucrose using melamine or urea as sources of nitrogen atoms and boric acid as a source of boron atoms. Modification of carbon materials with heteroelements is an effective way to improve their functional characteristics such as specific adsorption of gases and electrochemical capacity due to formation of the functional groups on their surface. Such a change in the chemical state of the surface of carbon materials leads to a change in the acid-base properties, improves the hydrophilicity, contributes to an additional electrochemical capacitance due to a passage of reversible redox processes involving surface groups.


Key words: carbon nanostructures, matrix, functionalization, specific adsorption, electrochemical capacity.

https://doi.org/10.15407/nnn.15.01.0113

REFERENCES

1. M. Armandi, B. Bonelli, and I. Bottero, Microporous and Mesoporous Materials, 103: 150 (2007). https://doi.org/10.1016/j.micromeso.2007.01.049
2. A. Stein, Z. Wang, and M. A. Fierke, Adv. Mater., 21, No. 3: 265 (2009). https://doi.org/10.1002/adma.200801492
3. J. Kim, M. Choi, and R. Ryoo, Bull. Korean Chem. Soc., 29, No. 2: 413 (2008).
4. D. Hulicova-Jurcakova, M. Seredych, Y. Jin, G.Q. Lu, and T. J. Bandosz, Carbon, 48: 1767 (2010). https://doi.org/10.1016/j.carbon.2010.01.020
5. A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, and Y. Bando, Adv. Mater., 17: 1648 (2005). https://doi.org/10.1002/adma.200401643
6. A. Vinu, M. Terrones, D. Golberg, S. Hishita, K. Ariga, and T. Mori, Chem. Mater., 17: 5887 (2005). https://doi.org/10.1021/cm051780j
7. J. S. Burgess, C. K. Acharya, J. Lizarazo, N. Yancey, B. Flowers, G. Kwon, et al., Carbon, 46, No. 13: 1711 (2008). https://doi.org/10.1016/j.carbon.2008.07.022
8. Y. Jeong and T. C. M. Chung, Carbon, 48, No. 9: 2526 (2010). https://doi.org/10.1016/j.carbon.2010.03.029
9. J. P. Paraknowitsch and A. Thomas, Energy Environ. Sci., 6, No. 10: 2839 (2013). https://doi.org/10.1039/c3ee41444b
10. L. Wang, F. H. Yang, and R. T. Yang, AIChE Journal, 55, No. 7: 1823 (2009). https://doi.org/10.1002/aic.11851
11. X. Zhai, Y. Song, J. Liu, P. Li, M. Zhong, C. Ma et al., J. of the Electrochem. Soc., 159, No. 12: E177 (2012). https://doi.org/10.1149/2.047212jes
12. M. M. Dubinin, Russ. J. Phys. Chem., 39, No. 6: 697 (1965).
13. G. Horvath and K. Kawazoe, J. Chem. Eng. Jap., 16, No. 6: 470 (1983). https://doi.org/10.1252/jcej.16.470
14. S. G. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (New York: Academic Press: 1994).
15. F. Chen, X. J. Xu, S. Shen, S. Kawi, and K. Hidajat, Micropor. Mesopor. Mater., 75, No. 3: 231 (2004). https://doi.org/10.1016/j.micromeso.2004.07.028
16. E. P. Barrett, L. G. Joyner, P. P. Halenda, J. of the American Chemical Society, 73, No. 1: 373 (1951).
17. J. Adolphs, Applied Surface Science, 253, No. 13: 5645 (2007). https://doi.org/10.1016/j.apsusc.2006.12.089
18. A. A. Nemodruk and Z. K. Karalova, Analytical Chemistry of Boron (Ed. E. Seijffers) (Jerusalem, Israel: Program for Scientific Translations: 1965).
19. Y. A. Tarkovskaya, Okislennyi Ugol' [Oxidized Carbon] (Kiev: Naukova Dumka: 1981) (in Russian).
20. P. M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, and J. Brauer, Thermochim. Acta, 424: 131 (2004). https://doi.org/10.1016/j.tca.2004.05.018
21. C. Devallencourt, J. M. Saiter, A. Fafet, and E. Ubrich, Thermochim. Acta, 259: 143 (1995). https://doi.org/10.1016/0040-6031(95)02262-Z
22. M. Seredych, D. Hulicova-Jurcakova, G. Q. Lu, and T. J. Bandosz, Carbon, 46: 1475 (2008). https://doi.org/10.1016/j.carbon.2008.06.027
23. M. Zhou, F. Pu, Z. Wang, and S. Guan, Carbon, 68: 185 (2014). https://doi.org/10.1016/j.carbon.2013.10.079
24. B. Xu, S. Hou, G. Cao, F. Wu, and Y. Yang, J. Mater. Chem., 22: 19088 (2012). https://doi.org/10.1039/c2jm32759g
25. J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Carbon, 33: 1641 (1995). https://doi.org/10.1016/0008-6223(95)00154-6
26. S. Biniak, G. Szymanski, J. Siedlewski, and A. Swiatkowski, Carbon, 35: 1799 (1997). https://doi.org/10.1016/S0008-6223(97)00096-1
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement