|
||||||||||||||||||||||||
Ñêà÷àòü ïîëíóþ âåðñèþ ñòàòüè (â PDF ôîðìàòå)
M. V. Bondarenko, T. A. Khalyavka, N. D. Shcherban’, and N. N. Tsyba Nanoscale composite materials based on titanium dioxide and carbons are obtained. The samples are characterized by means of XRD, SEM, BET, UV-VIS and IR spectroscopy. X-ray analysis reveals the phase of anatase in all composites. As established, the composites consist of roundish agglomerates of about 2 microns in size and, depending on the method of preparation, their crystallite sizes vary from 15 to 29 nm. Analysis of nitrogen sorption–desorption isotherms for the synthesized samples shows the presence of a hysteresis loop, which is the evidence for mesoporous structure of the powders. Absorption spectra of nanocomposites show a bathochromic shift as compared with the absorption band of pure TiO2. As found, the modification of titanium dioxide with carbon leads to band-gap narrowing of composites. The differences in the vibrational spectra of powders obtained by different methods are revealed. Nanocomposite samples show higher photocatalytic activity in the destruction of organic dyes safranin T and rhodamine under UV and visible irradiation compared to pure titanium dioxide. It may be concerned with the participation of carbon in the inhibition of electron–hole recombination, prolongation of charges lifetime, increasing of efficiency of interfacial charge separation from TiO2 to carbon and formation of doping electronic states. Composite materials based on titanium dioxide and carbons are proved to be perspective photocatalysts for industrial waste purification of various organic impurities, which are stable in the environment. Key words: nanocomposites, titanium dioxide, carbon, dyes, photocatalysis. https://doi.org/10.15407/nnn.15.01.0099 REFERENCES 1. P. K. Dubey, P. Tripathi, R. S. Tiwari, A. S. K. Sinha, and O. N. Srivastava, Intern. J. Hydrogen Energy, 39: 16282 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.104 2. Ch. H. Kim, B.-H. Kim, and K. S. Yang, Carbon, 50: 2472 (2012). https://doi.org/10.1016/j.carbon.2012.01.069 3. M. Barberio, P. Barone, A. Imbrogno, S. A. Ruffolo, M. L. Russa, N. Arcuri, and F. Xu, J. Chem. Chem. Eng., 8: 36 (2014). 4. R. Leary and A. Westwood, Carbon, 49: 741 (2011). https://doi.org/10.1016/j.carbon.2010.10.010 5. V. A. Trykhlib and V. V. Strelko, Sposib Oderzhannya Mikro-, Mezoporystogo Vugletsevogo Adsorbentu, Patent 1639892 SU. MKI, V22 F9/02, 9/14 (Bulletin, No. 16 (2016)) (in Ukrainian). 6. V. V. Shimanovskaya, V. V. Strelko, and N. M. Torchun, Ukr. Khim. Zhurn., 56, No. 12: 1255 (1990) (in Russian). 7. A. Guinier, Rentgenografiya Kristallov (Moscow: Gos. Izd-vo Fiz.-Mat. Lit.: 1961) (Russian translation). 8. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, No. 2: 309 (1938). https://doi.org/10.1021/ja01269a023 9. E. P. Barret, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 73, No. 3: 373 (1951). https://doi.org/10.1021/ja01145a126 10. Sh. Wang, L. Zhao, L. Bai, J. Yan, Q. Jiang, and J. Lian, J. Mater. Chem. A, 2: 7439 (2014). https://doi.org/10.1039/C4TA00354C 11. A. Anson-Casaos, I. Tacchini, A. Unzue and M. T. Martinez, Appl. Surf. Sci., 270: 675 (2013). https://doi.org/10.1016/j.apsusc.2013.01.120 12. C. Lin, Y. Song, L. Cao, and Sh. Chen, Nanoscale, 5: 4986 (2013). https://doi.org/10.1039/c3nr01033c 13. M. V. Bondarenko, T. A. Khalyavka, S. V. Camyshan, and I. S. Petrik, Chem., Phys. and Technol. of Surf., 7, No. 4: 432 (2016). 14. E. T. Bender, P. Katta, A. Lotus, S. J. Park, G. G. Chase, and R. D. Ramsier, Chem. Phys. Lett., 423: 302 (2006). https://doi.org/10.1016/j.cplett.2006.03.092 15. L. E. Davies, N. A. Bonini, S. Locatelli, and E. E. Gonzo, Latin Amer. Appl. Res., 35: 23 (2005). 16. Z. Ding, G. Q. Lu, and P. F. Greenfield, J. Phys. Chem. B, 104, No. 19: 4815 (2000). https://doi.org/10.1021/jp993819b 17. C. H. Cheng, J. Lehmann, J. E. Thies, S. D. Burton, and M. H. Engelhard, Org. Geochem., 37: 1477 (2006). https://doi.org/10.1016/j.orggeochem.2006.06.022 18. Z. W. Qu and G. J. Kroes, J. Phys. Chem. B, 110: 8998 (2006). https://doi.org/10.1021/jp056607p |
||||||||||||||||||||||||
|