|
||||||||||||||||||||||||
Скачать полную версию статьи (в PDF формате)
P. P. Gorbyk S. M. Makhno, I. V. Dubrovin, N. V. Abramov, V. M. Mishchenko, R. V. Mazurenko, A. L. Petranovska, E. V. Pilipchuk, and S. L. Prokopenko The review presents the scientific research performed in the O. O. Chuiko Institute of Surface Chemistry of the N.A.S. of Ukraine during the last two years and concerned with the synthesis as well as the investigation of properties of the nanostructures promising for the fabrication of the composite materials with a wide functional assignment in addition to their effective absorption of both electromagnetic radiation of a certain spectrum range and neutron radiation. Key words: nanostructured materials, magnetosensitive nanocomposites, electromagnetic radiation, neutron radiation, nanotechnologies. https://doi.org/10.15407/nnn.15.01.0047 REFERENCES 1. P. P. Gorbyk and V. V. Turov, Nanomaterialy i Nanokompozity v Meditsine, Biologii, Ehkologii (Ed. A. P. Shpak, V. F. Chekhun) (Kiev: Naukova Dumka: 2011) (in Russian). 2. S. N. Mahno and P. P. Gorbik, Poverkhnost’, Iss. 17: 27 (2010) (in Russian). 3. I. V. Uvarova, P. P. Gorbyk, S. V. Gorobets, O. A. Ivashchenko, and N. V. Uliyanchenko, Nanomaterialy Medychnogo Pryznachennya (Ed. V. V. Skorokhod) (Kyiv: Naukova Dumka: 2014) (in Ukrainian). 4. L. J. Cote, A. S. Teja, A. P. Wilkinson, and Z. J. Zhang, Fluid Phase Equilibr., 210, No. 2: 307 (2003). https://doi.org/10.1016/S0378-3812(03)00168-7 5. B. Ye. Paton, V. B. Molodkin, I. M. Karnaukhov, I. M. Neklyudov, V. E. Storizhko, P. P. Horbyk, A. I. Nizkova, S. I. Olikhovskiy, O. Yu. Hayevs'kyy, S. V. Lizunova, B. V. Sheludchenko, V. V. Lizunov, O. V. Tretyak, S. P. Repetsky, M. H. Tolmachov, A. D. Shevchenko, K. V. Fuzik, V. V. Molodkin, and G. O. Velikhovskii, Sposib Fazovoyi Rentgenografiyi Nekrystalichnogo Ob'yektu Dovil'nykh Formy i Rozmiriv [Phase Roentgenography Method of Noncrystalline Object with Arbitrary Forms and Sizes], Ukrainian Patent No. 111437 (Publ. April 25, 2016) (in Ukrainian). 6. P. P. Gorbyk, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 2: 323 (2013). 7. A. M. R. F. Teixeira, T. Ogasawara, and M. C. S. Nobrega, Mater. Res., 9: 257 (2006). https://doi.org/10.1590/S1516-14392006000300003 8. Q. Li, C. Bo, and W. Wang, Mater. Chem. Phys., 124: 891 (2010). https://doi.org/10.1016/j.matchemphys.2010.07.058 9. H. Liu, Y. Guo, Y. Zhang, F. Wu, Y. Liu, and D. Zhang, Mater. Sci. Eng. B, 178: 1057 (2013). https://doi.org/10.1016/j.mseb.2013.06.012 10. C. B. R. Jesus, E. C. Mendonca, L. S. Silva, W. S. D. Folly, C. T. Meneses, and J. G. S. Duque, J. Magn. Magn. Mater., 350: 47 (2014). https://doi.org/10.1016/j.jmmm.2013.09.025 11. J. Y. Patil, D. Y. Nadargi, J. L. Gurav, I. S. Mulla, and S. S. Suryavanshi, Ceram. Int., 40: 10607 (2014). https://doi.org/10.1016/j.ceramint.2014.03.041 12. A. C. F. M. Costa, E. Tortella, E. F. Neto, M. R. Morelli, and R. H. G. A. Kiminami, Mater. Res., 7: 523 (2004). https://doi.org/10.1590/S1516-14392004000400003 13. J. Dantas, J. R. D. Santos, R. B. L. Cunha, R. H. G. A. Kiminami, and A. C. F. M. Costa, Mater. Res., 16: 625 (2013). https://doi.org/10.1089/cpb.2007.0117.cxn 14. L. Han, X. Zhou, L. Wan, Y. Deng, and S. Zhan, J. Environ. Chem. Eng., 2: 123 (2014). https://doi.org/10.1016/j.jece.2013.11.031 15. V. Blanco-Gutierrez, E. Climent-Pascua, M. J. Torralvo-Fernandez, R. Saez-Puche, and M. T. Fernandez-Diaz, J. Solid State Chem., 184: 1608 (2011). https://doi.org/10.1016/j.jssc.2011.04.034 16. A. Banerjee, S. Bid, H. Dutta, S. Chaudhuri, D. Das, and S. K. Pradhan, Mater. Res., 15: 1022 (2012). https://doi.org/10.1590/S1516-14392012005000135 17. I. Mohai, J. Szepvolgyi, I. Bertoti, M. Mohai, J. Gubicza, and T. Ungar, Solid State Ionics, 141-142: 163 (2001). https://doi.org/10.1016/S0167-2738(01)00770-6 18. Y. Cao, D. Jia, P. Hu, and R. Wang, Ceram. Int., 39: 2989 (2013). https://doi.org/10.1016/j.ceramint.2012.09.076 19. A. Manikandan, L. J. Kennedy, M. Bououdina, and J. J. Vijaya, J. Magn. Magn. Mater., 349: 249 (2014). https://doi.org/10.1016/j.jmmm.2013.09.013 20. V. R. Lobaz, Syntez i Reaktsii Polimer-Mineralnykh Magnitnykh Chastynok Fe3O4 ta Zn z Oligoperoksydnoyu Obolonkoyu (Autoref. Diss. ??? Cand. Chem. Sci.) (Lviv: 2006). 21. G. D. Gatta, I. Kantor, T. B. Ballaran, L. Dubrovinsky, and C. McCammon, Physics and Chemistry of Minerals, 34: 627 (2007). https://doi.org/10.1007/s00269-007-0177-3 22. D. Levy, A. Pavese, and M. Hanfland, Physics and Chemistry of Minerals, 27: 638 (2000). https://doi.org/10.1007/s002690000117 23. J. G. Lee, J. Y. Park, and C. S. Kim, J. Mater. Sci., 33, No. 15: 3965 (1998). https://doi.org/10.1023/A:1004696729673 24. E. J. Choi, Y. Ahn, S. Kim, D. H. An, K. U. Kang, B. G. Lee, K. S. Back, and H. N. Oak, J. Magn. Magn. Mater., 262: 69 (2003). 25. J. Wanger, T. Autenrieth, and R. Hempelmann, J. Magn. Magn. Mater., 252: 4 (2002). 26. L. J. Cote, A. S. Teja, A. P. Wilkinson, and Z. J. Zhang, Fluid Phase Equilibr., 210: No. 2: 307 (2003). https://doi.org/10.1016/S0378-3812(03)00168-7 27. F. Bensebaa, F. Zavaliche, P. L. Ecuyer, R. W. Cochrane, and T. Veres, J. Colloid Interface Sci., 277: 104 (2004). https://doi.org/10.1016/j.jcis.2004.04.016 28. S. J. Kim, S. W. Lee, S. Y. An, and C. S. Kim, J. Magn. Magn. Mater., 215-216: 210 (2000). 29. X. M. Hou, F. Zhou, and W. M. Liu, Mater. Lett., 60: 3786 (2006). https://doi.org/10.1016/j.matlet.2006.03.114 30. N. V. Borisenko, I. V. Dubrovin, N. V. Abramov, V. M. Bogatyrev, M. V. Gaevaya, and P. P. Gorbik, Fiziko-Khimiya Nanomaterialov i Supramolekulyarnykh Struktur: Sb. Trudov (Ed. A. P. Shpak, P. P. Gorbik) (Kiev: Naukova Dumka: 2007), vol. 1, p. 394 (in Russian). 31. M. C. Day, Jr. and J. Selbin, Theoretical Inorganic Chemistry (Moscow: Khimiya: 1976) (Russian translation). 32. S. Ammar, A. Helfen, N. Jouini, F. Fievet, I. Rosenman, F. Villain, Ph. Molinie, and M. Danot, J. Mater. Chem., 11: 186 (2001). https://doi.org/10.1039/b003193n 33. P. P. Gorbik, V. N. Mishchenko, N. V. Abramov, Yu. N. Troshchenkov, and D. G. Usov, Khimiya, Fizika i Tekhnologiya Poverhnosti, 1, No. 16: 165 (2009) (in Russian). 34. N. V. Abramov, S. P. Turanska, A. P. Kusyak, A. L. Petranovska, and P. P. Gorbyk, J. Nanostruct. Chem., 6: 223 (2016). https://doi.org/10.1007/s40097-016-0196-z 35. A. I. Gusev, Nanomaterialy, Nanostruktury, Nanotekhnologii (Moscow: Fizmatlit: 2005) (in Russian). 36. J. Safaei-Ghomi, S. Rohani, and A. Ziarati, J. Nanostructures, 2: 79 (2012). 37. A. M. Magerramov, M. A. Nuriev, I. A. Veliev, and S. I. Safarova, Ehlektronnaya Obrabotka Materialov, 2: 92 (2010) (in Russian). 38. G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, J. Appl. Phys., 94: 3520 (2003). https://doi.org/10.1063/1.1599959 39. Ie. V. Pylypchuk and P. P. Gorbyk, Khimiya, Fizika i Tekhnologiya Poverhnosti, 6, No. 21: 150 (2014) (in Ukrainian). 40. P. P. Gorbyk, A. L. Petranovska, M. P. Turelyk et al., Nanokapsula z Funktsiyamy Nanorobota, Patent Ukrainy No. 99211 (Publ. 25.07.2012). 41. S. P. Turanskaya, M. P. Turelik, A. L. Petranovskaya, V. V. Turov, and P. P. Gorbik, Poverhnost', 2: No. 17: 355 (2010) (in Russian). 42. P. P. Gorbik, A. L. Petranovskaya, E. V. Pilipchuk, N. V. Abramov, E. I. Oranskaya, and A. M. Korduban, Khimiya, Fizyka ta Tekhnologiya Poverkhni, 2, No. 4: 385 (2011) (in Russian). 43. P. P. Gorbyk, A. L. Petranovska, Ie. V. Pylypchuk, M. V. Abramov, O. A. Vasylieva, V. B. Molodkin, M. P. Kulish, and O. P. Dmytrenko, Magnitochutlyvyi Neitronozakhvatnyi Nanokompozytnyi Material, Patent na Korysnu Model Ukrainy No. 91910 (Publ. 25.07.2014). 44. Ie. V. Pylypchuk, Yu. O. Zubchuk, A. L. Petranovska, C. P. Turanska, and P. P. Gorbyk, Khimiya, Fizyka ta Tekhnologiya Poverkhni, 6, No. 3: 326 (2015) (in Ukrainian). 45. P. P. Gorbyk, L. B. Lerman, A. L. Petranovska, and S. P. Turanska, Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications (New York: Nova Science Publishers: 2014), Ch. 9, p. 161. 46. P. P. Gorbyk, L. B. Lerman, A. L. Petranovska, S. P. Turanska, Ie. V. Pylypchuk, Fabrication and Self-Assembly of Nanobiomaterials, Applications of Nanobiomaterials (Ed. A. Grumezescu) (Elsevier: 2016), Ch. 10, p. 289. 47. K. C. Hwang, P. D. Lai, C.-S. Chiang, P.-J. Wang, and C.-J. Yuan, Biomater., 31, No. 32: 8419 (2010). https://doi.org/10.1016/j.biomaterials.2010.07.057 48. C. D. Meo, L. Panza, D. Capitani, L. Mannina et al., Biomacromol., 8, No. 2: 552 (2007). https://doi.org/10.1021/bm0607426 49. Ie. Pylypchuk, A. Petranovskaya, P. Gorbyk, A. Korduban, P. Markovsky, and O. Ivasishin, Nanoscale Research Letters, 10: 338 (2015). https://doi.org/10.1186/s11671-015-1017-x 50. P. P. Gorbyk, A. L. Petranovskaya, Ie. V. Pilipchuk, N. V. Abramov, E. Y. Oranskaya, and A. M. Korduban, Khimiya, Fizyka ta Tekhnologiya Poverkhni, 2, No. 4: 385 (2011) (in Russian). 51. D. G. Usov, A. L. Petranovska, M. P. Turelik, O. M. Korduban, and P. P. Gorbik, Poverkhnost', Iss. 15: 320 (2011) (in Ukrainian). 52. V. E. Nefedov, Rentgenoehlektronnaya Spektroskopiya Khimicheskikh Soedineniy (Moscow: Khimiya: 1984) (in Russian). |
||||||||||||||||||||||||
|