Выпуски

 / 

2017

 / 

том 15 / 

выпуск 1

 



Скачать полную версию статьи (в PDF формате)

P. P. Gorbyk S. M. Makhno, I. V. Dubrovin, N. V. Abramov, V. M. Mishchenko, R. V. Mazurenko, A. L. Petranovska, E. V. Pilipchuk, and S. L. Prokopenko
«Synthesis and Properties of the Nanostructures Absorbing Microwave Electromagnetic and Neutron Radiations»
047–082 (2017)

PACS numbers: 75.60.Ej, 78.67.Sc, 83.60.Np, 87.50.-a, 87.64.K-, 87.85.Qr, 87.85.Rs

The review presents the scientific research performed in the O. O. Chuiko Institute of Surface Chemistry of the N.A.S. of Ukraine during the last two years and concerned with the synthesis as well as the investigation of properties of the nanostructures promising for the fabrication of the composite materials with a wide functional assignment in addition to their effective absorption of both electromagnetic radiation of a certain spectrum range and neutron radiation.


Key words: nanostructured materials, magnetosensitive nanocomposites, electromagnetic radiation, neutron radiation, nanotechnologies.

https://doi.org/10.15407/nnn.15.01.0047

REFERENCES

1. P. P. Gorbyk and V. V. Turov, Nanomaterialy i Nanokompozity v Meditsine, Biologii, Ehkologii (Ed. A. P. Shpak, V. F. Chekhun) (Kiev: Naukova Dumka: 2011) (in Russian).
2. S. N. Mahno and P. P. Gorbik, Poverkhnost’, Iss. 17: 27 (2010) (in Russian).
3. I. V. Uvarova, P. P. Gorbyk, S. V. Gorobets, O. A. Ivashchenko, and N. V. Uliyanchenko, Nanomaterialy Medychnogo Pryznachennya (Ed. V. V. Skorokhod) (Kyiv: Naukova Dumka: 2014) (in Ukrainian).
4. L. J. Cote, A. S. Teja, A. P. Wilkinson, and Z. J. Zhang, Fluid Phase Equilibr., 210, No. 2: 307 (2003). https://doi.org/10.1016/S0378-3812(03)00168-7
5. B. Ye. Paton, V. B. Molodkin, I. M. Karnaukhov, I. M. Neklyudov, V. E. Storizhko, P. P. Horbyk, A. I. Nizkova, S. I. Olikhovskiy, O. Yu. Hayevs'kyy, S. V. Lizunova, B. V. Sheludchenko, V. V. Lizunov, O. V. Tretyak, S. P. Repetsky, M. H. Tolmachov, A. D. Shevchenko, K. V. Fuzik, V. V. Molodkin, and G. O. Velikhovskii, Sposib Fazovoyi Rentgenografiyi Nekrystalichnogo Ob'yektu Dovil'nykh Formy i Rozmiriv [Phase Roentgenography Method of Noncrystalline Object with Arbitrary Forms and Sizes], Ukrainian Patent No. 111437 (Publ. April 25, 2016) (in Ukrainian).
6. P. P. Gorbyk, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 2: 323 (2013).
7. A. M. R. F. Teixeira, T. Ogasawara, and M. C. S. Nobrega, Mater. Res., 9: 257 (2006). https://doi.org/10.1590/S1516-14392006000300003
8. Q. Li, C. Bo, and W. Wang, Mater. Chem. Phys., 124: 891 (2010). https://doi.org/10.1016/j.matchemphys.2010.07.058
9. H. Liu, Y. Guo, Y. Zhang, F. Wu, Y. Liu, and D. Zhang, Mater. Sci. Eng. B, 178: 1057 (2013). https://doi.org/10.1016/j.mseb.2013.06.012
10. C. B. R. Jesus, E. C. Mendonca, L. S. Silva, W. S. D. Folly, C. T. Meneses, and J. G. S. Duque, J. Magn. Magn. Mater., 350: 47 (2014). https://doi.org/10.1016/j.jmmm.2013.09.025
11. J. Y. Patil, D. Y. Nadargi, J. L. Gurav, I. S. Mulla, and S. S. Suryavanshi, Ceram. Int., 40: 10607 (2014). https://doi.org/10.1016/j.ceramint.2014.03.041
12. A. C. F. M. Costa, E. Tortella, E. F. Neto, M. R. Morelli, and R. H. G. A. Kiminami, Mater. Res., 7: 523 (2004). https://doi.org/10.1590/S1516-14392004000400003
13. J. Dantas, J. R. D. Santos, R. B. L. Cunha, R. H. G. A. Kiminami, and A. C. F. M. Costa, Mater. Res., 16: 625 (2013). https://doi.org/10.1089/cpb.2007.0117.cxn
14. L. Han, X. Zhou, L. Wan, Y. Deng, and S. Zhan, J. Environ. Chem. Eng., 2: 123 (2014). https://doi.org/10.1016/j.jece.2013.11.031
15. V. Blanco-Gutierrez, E. Climent-Pascua, M. J. Torralvo-Fernandez, R. Saez-Puche, and M. T. Fernandez-Diaz, J. Solid State Chem., 184: 1608 (2011). https://doi.org/10.1016/j.jssc.2011.04.034
16. A. Banerjee, S. Bid, H. Dutta, S. Chaudhuri, D. Das, and S. K. Pradhan, Mater. Res., 15: 1022 (2012). https://doi.org/10.1590/S1516-14392012005000135
17. I. Mohai, J. Szepvolgyi, I. Bertoti, M. Mohai, J. Gubicza, and T. Ungar, Solid State Ionics, 141-142: 163 (2001). https://doi.org/10.1016/S0167-2738(01)00770-6
18. Y. Cao, D. Jia, P. Hu, and R. Wang, Ceram. Int., 39: 2989 (2013). https://doi.org/10.1016/j.ceramint.2012.09.076
19. A. Manikandan, L. J. Kennedy, M. Bououdina, and J. J. Vijaya, J. Magn. Magn. Mater., 349: 249 (2014). https://doi.org/10.1016/j.jmmm.2013.09.013
20. V. R. Lobaz, Syntez i Reaktsii Polimer-Mineralnykh Magnitnykh Chastynok Fe3O4 ta Zn z Oligoperoksydnoyu Obolonkoyu (Autoref. Diss. ??? Cand. Chem. Sci.) (Lviv: 2006).
21. G. D. Gatta, I. Kantor, T. B. Ballaran, L. Dubrovinsky, and C. McCammon, Physics and Chemistry of Minerals, 34: 627 (2007). https://doi.org/10.1007/s00269-007-0177-3
22. D. Levy, A. Pavese, and M. Hanfland, Physics and Chemistry of Minerals, 27: 638 (2000). https://doi.org/10.1007/s002690000117
23. J. G. Lee, J. Y. Park, and C. S. Kim, J. Mater. Sci., 33, No. 15: 3965 (1998). https://doi.org/10.1023/A:1004696729673
24. E. J. Choi, Y. Ahn, S. Kim, D. H. An, K. U. Kang, B. G. Lee, K. S. Back, and H. N. Oak, J. Magn. Magn. Mater., 262: 69 (2003).
25. J. Wanger, T. Autenrieth, and R. Hempelmann, J. Magn. Magn. Mater., 252: 4 (2002).
26. L. J. Cote, A. S. Teja, A. P. Wilkinson, and Z. J. Zhang, Fluid Phase Equilibr., 210: No. 2: 307 (2003). https://doi.org/10.1016/S0378-3812(03)00168-7
27. F. Bensebaa, F. Zavaliche, P. L. Ecuyer, R. W. Cochrane, and T. Veres, J. Colloid Interface Sci., 277: 104 (2004). https://doi.org/10.1016/j.jcis.2004.04.016
28. S. J. Kim, S. W. Lee, S. Y. An, and C. S. Kim, J. Magn. Magn. Mater., 215-216: 210 (2000).
29. X. M. Hou, F. Zhou, and W. M. Liu, Mater. Lett., 60: 3786 (2006). https://doi.org/10.1016/j.matlet.2006.03.114
30. N. V. Borisenko, I. V. Dubrovin, N. V. Abramov, V. M. Bogatyrev, M. V. Gaevaya, and P. P. Gorbik, Fiziko-Khimiya Nanomaterialov i Supramolekulyarnykh Struktur: Sb. Trudov (Ed. A. P. Shpak, P. P. Gorbik) (Kiev: Naukova Dumka: 2007), vol. 1, p. 394 (in Russian).
31. M. C. Day, Jr. and J. Selbin, Theoretical Inorganic Chemistry (Moscow: Khimiya: 1976) (Russian translation).
32. S. Ammar, A. Helfen, N. Jouini, F. Fievet, I. Rosenman, F. Villain, Ph. Molinie, and M. Danot, J. Mater. Chem., 11: 186 (2001). https://doi.org/10.1039/b003193n
33. P. P. Gorbik, V. N. Mishchenko, N. V. Abramov, Yu. N. Troshchenkov, and D. G. Usov, Khimiya, Fizika i Tekhnologiya Poverhnosti, 1, No. 16: 165 (2009) (in Russian).
34. N. V. Abramov, S. P. Turanska, A. P. Kusyak, A. L. Petranovska, and P. P. Gorbyk, J. Nanostruct. Chem., 6: 223 (2016). https://doi.org/10.1007/s40097-016-0196-z
35. A. I. Gusev, Nanomaterialy, Nanostruktury, Nanotekhnologii (Moscow: Fizmatlit: 2005) (in Russian).
36. J. Safaei-Ghomi, S. Rohani, and A. Ziarati, J. Nanostructures, 2: 79 (2012).
37. A. M. Magerramov, M. A. Nuriev, I. A. Veliev, and S. I. Safarova, Ehlektronnaya Obrabotka Materialov, 2: 92 (2010) (in Russian).
38. G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, J. Appl. Phys., 94: 3520 (2003). https://doi.org/10.1063/1.1599959
39. Ie. V. Pylypchuk and P. P. Gorbyk, Khimiya, Fizika i Tekhnologiya Poverhnosti, 6, No. 21: 150 (2014) (in Ukrainian).
40. P. P. Gorbyk, A. L. Petranovska, M. P. Turelyk et al., Nanokapsula z Funktsiyamy Nanorobota, Patent Ukrainy No. 99211 (Publ. 25.07.2012).
41. S. P. Turanskaya, M. P. Turelik, A. L. Petranovskaya, V. V. Turov, and P. P. Gorbik, Poverhnost', 2: No. 17: 355 (2010) (in Russian).
42. P. P. Gorbik, A. L. Petranovskaya, E. V. Pilipchuk, N. V. Abramov, E. I. Oranskaya, and A. M. Korduban, Khimiya, Fizyka ta Tekhnologiya Poverkhni, 2, No. 4: 385 (2011) (in Russian).
43. P. P. Gorbyk, A. L. Petranovska, Ie. V. Pylypchuk, M. V. Abramov, O. A. Vasylieva, V. B. Molodkin, M. P. Kulish, and O. P. Dmytrenko, Magnitochutlyvyi Neitronozakhvatnyi Nanokompozytnyi Material, Patent na Korysnu Model Ukrainy No. 91910 (Publ. 25.07.2014).
44. Ie. V. Pylypchuk, Yu. O. Zubchuk, A. L. Petranovska, C. P. Turanska, and P. P. Gorbyk, Khimiya, Fizyka ta Tekhnologiya Poverkhni, 6, No. 3: 326 (2015) (in Ukrainian).
45. P. P. Gorbyk, L. B. Lerman, A. L. Petranovska, and S. P. Turanska, Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications (New York: Nova Science Publishers: 2014), Ch. 9, p. 161.
46. P. P. Gorbyk, L. B. Lerman, A. L. Petranovska, S. P. Turanska, Ie. V. Pylypchuk, Fabrication and Self-Assembly of Nanobiomaterials, Applications of Nanobiomaterials (Ed. A. Grumezescu) (Elsevier: 2016), Ch. 10, p. 289.
47. K. C. Hwang, P. D. Lai, C.-S. Chiang, P.-J. Wang, and C.-J. Yuan, Biomater., 31, No. 32: 8419 (2010). https://doi.org/10.1016/j.biomaterials.2010.07.057
48. C. D. Meo, L. Panza, D. Capitani, L. Mannina et al., Biomacromol., 8, No. 2: 552 (2007). https://doi.org/10.1021/bm0607426
49. Ie. Pylypchuk, A. Petranovskaya, P. Gorbyk, A. Korduban, P. Markovsky, and O. Ivasishin, Nanoscale Research Letters, 10: 338 (2015). https://doi.org/10.1186/s11671-015-1017-x
50. P. P. Gorbyk, A. L. Petranovskaya, Ie. V. Pilipchuk, N. V. Abramov, E. Y. Oranskaya, and A. M. Korduban, Khimiya, Fizyka ta Tekhnologiya Poverkhni, 2, No. 4: 385 (2011) (in Russian).
51. D. G. Usov, A. L. Petranovska, M. P. Turelik, O. M. Korduban, and P. P. Gorbik, Poverkhnost', Iss. 15: 320 (2011) (in Ukrainian).
52. V. E. Nefedov, Rentgenoehlektronnaya Spektroskopiya Khimicheskikh Soedineniy (Moscow: Khimiya: 1984) (in Russian).
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.
E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement