|
||||||||||||||||||||||||
Ñêà÷àòü ïîëíóþ âåðñèþ ñòàòüè (â PDF ôîðìàòå)
O. M. Bordun, I. O. Bordun, I. J. Kukharskyy, V. V. Ptashnyk, Zh. Ia. Tsapovska, and D. S. Leonov The structure of the surface of thin films of Y2O3:Eu obtained by RF sputtering when the activator concentration varies within the range 1.0–7.5 mol.% is investigated. The spectra of IR reflection of the thin film Y2O3:Eu–fused quartz (?-SiO2) substrate system at 295 K in region 400–1600 cm–1 are measured. The peaks in the vibrational spectrum of films Y2O3:Eu are interpreted. AS revealed, the peaks of IR reflection with maxima at 1218 and 1253 cm–1 are quite sensitive to changes of Eu3? activator concentration, size of crystallites forming the film, and structural perfection of obtained films. Key words: yttrium oxide, thin films, crystallites, vibrational spectra. https://doi.org/10.15407/nnn.15.01.0027 REFERENCES 1. N. Yamamoto, Cathodoluminescence (Croatia: InTech: 2012). https://doi.org/10.5772/1989 2. A. S. Bugaev, V. B. Kireev, E. P. Sheshin, and A. Yu. Kolodyazhnyi, Uspekhi Fiz. Nauk, 185, No. 8: 853 (2015) (in Russian). https://doi.org/10.3367/UFNr.0185.201508e.0853 3. S. H. Cho, S. H. Know, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwone, J. Electrochem. Soc., 147, No. 8: 3143 (2000). https://doi.org/10.1149/1.1393872 4. Q. Dai, M. E. Foley, C. J. Breshike, A. Lita, and G. F. Strouse, J. Am. Chem. Soc., 133, No. 39: 15475 (2011). https://doi.org/10.1021/ja2039419 5. C. Shanga, X. Shang, Y. Qu, and M. Li, Chem. Phys. Lett., 501, Nos. 4-6: 480 (2011). https://doi.org/10.1016/j.cplett.2010.11.085 6. R. Srinivasan, N. R. Yogamalar, J. Elanchezhiyan, R. J. Joseyphus, and A. C. Bose, J. Alloys Comp., 496, Nos. 1-2: 472 (2010). https://doi.org/10.1016/j.jallcom.2010.02.083 7. P. Packiyaraj and P. Thangadurai, J. Lumin., 145: 997 (2014). https://doi.org/10.1016/j.jlumin.2013.07.074 8. O. M. Bordun, I. O. Bordun, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 82, No. 3: 390 (2015). https://doi.org/10.1007/s10812-015-0118-8 9. L. D. Landau and E. M. Lifshitz, Ehlektrodinamika Sploshnykh Sred (Moscow: Nauka: 1982) (in Russian). 10. X. Li, Q. Li, Z. Xia, L. Wang, W. Yan, J. Wang, and R. I. Boughton, Cryst. Growth Des., 6, No. 10: 2193 (2006). https://doi.org/10.1021/cg0600400 11. S. X. Lu and Y. G. Liu, J. Non-Cryst. Sol., 353: 1037 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.01.015 12. O. M. Bordun, I. O. Bordun, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 79, No. 6: 982 (2013). https://doi.org/10.1007/s10812-013-9711-x 13. M. Buijs, A. Meyerink, and G. Blasse, J. Lumin., 37, No. 1: 9 (1987). https://doi.org/10.1016/0022-2313(87)90177-3 14. M. V. Abrashev, N. D. Todorov, and J. Geshev, J. Appl. Phys., 116, No. 10: 103508 (2014). https://doi.org/10.1063/1.4894775 15. G. Schaack and J. A. Koningstein, J. Opt. Soc. Am., 60, No. 8: 1110 (1970). https://doi.org/10.1364/JOSA.60.001110 16. N. D. Todorov, M. V. Abrashev, V. Marinova, M. Kadiyski, L. Dimova, and E. Faulques, Phys. Rev. B, 87, No. 10: 104301 (2013). https://doi.org/10.1103/PhysRevB.87.104301 17. A. Anderson, Primenenie Spektrov Kombinatsionnogo Rasseyaniya (Moscow: Mir: 1977) (Russian translation). 18. J. Gouteron, J. Zarembowitch, and A. Lejus, CR Acad. Sci. Paris, 289: C243 (1979). 19. A. A. Kaminskii, K. Ueda, H. J. Eichler, S. N. Bagaev, K. Takaichi, J. Lu, A. Shirakawa, H. Yagi, and T. Yanagitani, Laser Phys. Lett., 1, No. 1: 6 (2004). https://doi.org/10.1002/lapl.200310004 20. O. M. Bordun and I. M. Bordun, Ukr. Fiz. Zhurn., 41, No. 4: 445 (1996) (in Ukrainian). 21. V. N. Strekalovskiy, Yu. N. Makurin, G. G. Kasimov, and Eh. G. Vovkotrub, Izv. AN SSSR. Neorgan. Materialy, 22, No. 12: 2067 (1986) (in Russian). 22. K. Nakomoto, IK-Spektry i Spektry KR Neorganicheskikh i Koordinatsionnykh Soedineniy (Moscow: Mir: 1991) (Russian translation). |
||||||||||||||||||||||||
|