Download the full version of the article (PDF) Open Access
Department of Physics (GSS), GITAM Deemed to be University, 562163 Bangalore, India

Applications of EMI Shielding: A Review on the Role of MXenes and Their Composites

633–651 (2025)

PACS numbers: 28.41.Qb, 61.82.Rx, 78.40.Ha, 78.67.Sc, 81.05.Je, 87.50.-a, 87.85.jf

MXenes are emerging materials that find significant applications in EMI shielding. Ferrites, carbon, cotton fabrics, and polymer composites of MXenes are said to improve EMI shielding. These composites are flexible with low weight exhibiting high conductivity and large surface area. The shielding effectiveness depends on parameters like reflection and absorption. Hence, the shielding efficiency may be enhanced by tailoring the MXenes' composite to suitable absorption and multiple reflections. MXenes are two-dimensional materials, which are rapidly expanding in view of their high conductivity, thermal stability, water dispersibility, and easy-process ability. Their effective EMI shielding makes them more significant in electromagnetic applications. This review aims to discuss the shielding effectiveness (SE) obtained by MXenes and their composites. The shielding parameters related to total attenuation (SET), attenuation due to absorption (SEA), attenuation due to reflection (SER), and attenuation due to multiple reflections (SEM) of an electromagnetic wave are discussed. These values determine shielding effectiveness of a given material. If the value of SET ≥ 30 dB, it signifies best efficiency; if SET < 10 dB, no shielding exists, while, if SET is between 10 dB and 30 dB, it denotes minimum effective range of shielding.

KEY WORDS: MXenes, MXenes' composites, EMI shielding, shielding effectiveness

DOI: https://doi.org/10.15407/nnn.23.03.0633

Citation:
N. V. Krishna Prasad, Applications of EMI Shielding: A Review on the Role of MXenes and Their Composites, Nanosistemi, Nanomateriali, Nanotehnologii, 23, No. 3: 633–651 (2025); https://doi.org/10.15407/nnn.23.03.0633

Funding / Acknowledgments:
The author sincerely acknowledges Ritesh Verma et al. (2023) for giving the copyright to use the images in this review article.

REFERENCES
  1. S. Geetha, K. K. S. Kumar, C. R. K. Rao, M. Vijayan, and D. C. Trivedi, J. Appl. Polym. Sci., 112, Iss. 4: 2073 (2009); https://doi.org/10.1002/app.29812
  2. Meikang Han and Yury Gogotsi, Carbon, 204: 17 (2023); https://doi.org/10.1016/j.carbon.2022.12.036
  3. Yue-Yi Wang, Feng Zhang, Nan Li, Jun-Feng Shi, Li-Chuan Jia, Ding-Xiang Yan, and Zhong-Ming Li, Carbon, 205: 10 (2023); https://doi.org/10.1016/j.carbon.2023.01.007
  4. Khalid Muajsam Batoo, Muhammad Hadi, Ritesh Verma, Ankush Chauhan, Rajesh Kumar, Mahavir Singh, and Omar M. Aldossary, Ceram. Int., 48, Iss. 3: 3328 (2022); https://doi.org/10.1016/j.ceramint.2021.10.108
  5. Khalid Mujasam Batoo, Muhammad Hadi, Ankush Chauhan, Ritesh Verma, Mahavir Singh, Omar M. Aldossary, and Gagan Kumar Bhargava, Appl. Phys. A, 128: Article No. 283 (2022); https://doi.org/10.1007/s00339-022-05423-1
  6. Ritesh Verma, Preethi Thakur, Ankush Chauhan, Rohit Jasrotia, and Atul Thakur, Carbon, 208: 170 (2023); https://doi.org/10.1016/j.carbon.2023.03.050
  7. Y. S. Choi, Y. H. Yoo, J. G. Kim, and S. H. Kim, Surf. Coating. Technol., 201: 6 (2006); https://doi.org/10.1016/j.surfcoat.2006.03.040
  8. Aamir Iqbal, Faisal Shahzad, Kanit Hantanasirisakul, Myung-Ki Kim, Jisung Kwon, Junpyo Hong, Hyerim Kim, Daesin Kim, Yury Gogotsi, and Chong Min Koo, Science, 369, Iss. 6502: 446 (2020); https://doi.org/10.1126/science.aba7977
  9. Seung Hwan Lee, Seunggun Yu, Faisal Shahzad, Woo Nyon Kim, Cheolmin Park, Soon Man Hong, and Chong Min Koo, Nanoscale, 36: 13432 (2017); https://doi.org/10.1039/C7NR02618H
  10. Hongtao Guan and D. D. L. Chung, Carbon, 157: 549 (2020); https://doi.org/10.1016/j.carbon.2019.10.071
  11. Aamir Iqbal, Pradeep Sambyal, and Chong Min Koo, Adv. Funct. Mater., 30, Iss. 47: 2000883 (2020); https://doi.org/10.1002/adfm.202000883
  12. Ji Liu, Hao-Bin Zhang, Renhui Sun, Yafeng Liu, Zhangshuo Liu, Aiguo Zhou, and Zhong-Zhen Yu, Adv. Mater., 29, Iss. 38: 1702367 (2017); https://doi.org/10.1002/adma.201702367
  13. Pradip Kumar, Seunggun Yu, Faisal Shahzad, Soon Man Hong, Yoon-Hyun Kim, and Chong Min Koo, Carbon, 101: 120 (2016); https://doi.org/10.1016/j.carbon.2016.01.88
  14. Pradip Kumar, Faisal Shahzad, Seunggun Yu, Soon Man Hong, Yoon-Hyun Kim, and Chong Min Koo, Carbon, 94: 494 (2015); https://doi.org/10.1016/j.carbon.2015.07.032
  15. Jizhen Zhang, Na Kong, Simge Uzun, Ariana Levitt, Shayan Seyedin, Peter A. Lynch, Si Qin, Meikang Han, Wenrong Yang, Jingquan Liu, Xungai Wang, Yury Gogotsi, and Joselito M. Razal, Adv. Mater., 32, Iss. 23: 2001093 (2020); https://doi.org/10.1002/adma.202001093
  16. Min Su Kim, Seongyeon Cho, Se Hun Joo, Junsang Lee, Sang Kyu Kwak, Moon Il Kim, and Jinwoo Lee, ACS Nano, 13, Iss. 4: 4312 (2019); https://doi.org/10.1021/acsnano.9b04088
  17. Pradeep Sambyal, Aamir Iqbal, Junpyo Hong, Hyerim Kim, Myung-Ki Kim, Soon Man Hong, Meikang Han, Yury Gogotsi, and Chong Min Koo, ACS Appl. Mater. Interfaces, 11, Iss. 41: 38046 (2019); https://doi.org/10.1021/acsami.9b12550
  18. Wen-Tao Cao, Fei-Fei Chen, Ying-Jie Zhu, Yong-Gang Zhang, Ying-Ying Jiang, Ming-Guo Ma, and Feng Chen, ACS Nano, 12, Iss. 5: 4583 (2018); https://doi.org/10.1021/acsnano.8b00997
  19. Guo-Ming Weng, Jinyang Li, Mohamed Alhabeb, Christopher Karpovich, Hang Wang, Jason Lipton, Kathleen Maleski, Jaemin Kong, Evyatar Shaulsky, Menachem Elimelech, Yury Gogotsi, and André D. Taylor, Adv. Funct. Mater., 28, Iss. 44: 1803360 (2018); https://doi.org/10.1002/adfm.201803360
  20. Mao-Sheng Cao, Jin-Cheng Shu, Bo Wen, Xi-Xi Wang, and Wen-Qiang Cao, Small Structures, 2, Iss. 11: 2100104 (2021); https://doi.org/10.1002/sstr.202100104
  21. Maosheng Cao, Xixi Wang, Wenqiang Cao, Xiaoyong Fang, Bo Wen, and Jie Yuan, Small, 14, Iss. 29: 1800987 (2018); https://doi.org/10.1002/smll.201800987
  22. Xi-Xi Wang, Jin-Cheng Shu, Wen-Qiang Cao, Min Zhang, Jie Yuan, and Mao-Sheng Cao, Chem. Eng. J., 369: 1068 (2019); https://doi.org/10.1016/j.cej.2019.03.164
  23. Peng He, Mao-Sheng Cao, Yong-Zhu Cai, Jin-Cheng Shu, Wen-Qiang Cao, and Jie Yuan, Carbon, 157: 80 (2020); https://doi.org/10.1016/j.carbon.2019.10.009
  24. Michael Naguib, Murat Kurtoglu, Volker Presser, Jun Lu, Junjie Niu, Min Heon, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum, Advanced Materials, 23, Iss. 37: 4248 (2011); https://doi.org/10.1002/adma.201102306
  25. Qixun Xia, Yulong Fan, Shiwen Li, Aiguo Zhou, Nanasaheb Shinde, and Rajaram S. Mane, Diamond and Related Materials, 131: 109557 (2023); https://doi.org/10.1016/j.diamond.2022.109557
  26. Grayson Deysher, Christopher Eugene Shuck, Kanit Hantanasirisakul, Nathan C. Frey, Alexandre C. Foucher, Kathleen Maleski, Asia Sarycheva, Vivek B. Shenoy, Eric A. Stach, Babak Anasori, and Yury Gogotsi, ACS Nano, 14, Iss. 1: 204 (2019); https://doi.org/10.1021/acsnano.9b07708
  27. Martin Magnuson and Maurizio Mattesini, Thin Solid Films, 621: 108 (2017); https://doi.org/10.1016/j.tsf.2016.11.005
  28. Rahele Meshkian, Lars-Åke Näslund, Joseph Halim, Jun Lu, Michel W. Barsoum, and Johanna Rosen, J. Scr. Mater., 108: 147 (2015); https://doi.org/10.1016/j.scriptamat.2015.07.003
  29. Faisal Shahzad, Mohamed Alhabeb, Christine B. Hatter, Babak Anasori, Soon Man Hong, Chong Min Koo, and Yury Gogotsi, Science, 353, Iss. 6304: 1137 (2016); https://doi.org/10.1126/science.aag2421
  30. Meikang Han, Christopher Eugene Shuck, Roman Rakhmanov, David Parchment, Babak Anasori, Chong Min Koo, Gary Friedman, and Yury Gogotsi, ACS Nano, 14, Iss. 4: 5008 (2020); https://doi.org/10.1021/acsnano.0c01312
  31. Hailong Xu, Xiaowei Yin, Xinliang Li, Minghang Li, Shuang Liang, Litong Zhang, and Laifei Cheng, ACS Appl. Mater. Interfaces, 11, Iss. 10: 10198 (2019); https://doi.org/10.1021/acsami.8b21671
  32. Yuan Tong, Man He, Yuming Zhou, Xi Zhong, Lidan Fan, Tingyuan Huang, Qiang Liao, and Yongjuan Wang, Appl. Surf. Sci., 434: 283 (2018); https://doi.org/10.1016/j.apsusc.2017.10.140
  33. Meikang Han, Xiaowei Yin, Heng Wu, Zexin Hou, Changqing Song, Xinliang Li, Litong Zhang, and Laifei Cheng, ACS Appl. Mater. Interfaces, 8, Iss. 32: 21011 (2016); https://doi.org/10.1021/acsami.6b06455
  34. Min Li, Yanhui Song, Chao Zhang, Zhenzhong Yong, Jian Qiao, Dongmei Hu, Zuoguang Zhang, Huazhen Wei, Jiangtao Di, and Qingwen Li, Carbon, 146: 627 (2019); https://doi.org/10.1016/j.carbon.2019.02.003
  35. Jason Lipton, Jason A. Röhr, Vi Dang, Adam Goad, Kathleen Maleski, Francesco Lavini, Meikang Han, Esther H. R. Tsai, Guo-Ming Weng, Jaemin Kong, Elisa Riedo, Yury Gogotsi, and André D. Taylor, Matter, 3, Iss. 2: 546 (2020); https://doi.org/10.1016/j.matt.2020.05.023
  36. Zhihui Zeng, Hao Jin, Mingji Chen, Weiwei Li, Licheng Zhou, and Zhong Zhang, Adv. Funct. Mater., 26, Iss. 2 (2016); https://doi.org/10.1002/adfm.201503579
  37. Di Xing, Longsheng Lu, Kwok Siong Teh, Zhenping Wan, Yingxi Xie, and Yong Tang, Carbon, 132: 32 (2018); https://doi.org/10.1016/j.carbon.2018.02.001
  38. Yuezhan Feng, Bo Wang, Xiongwei Li, Yunsheng Ye, Jianmin Ma, Chuntai Liu, Xingping Zhou, and Xiaolin Xie, Carbon, 146: 650 (2019); https://doi.org/10.1016/j.carbon.2019.01.099
  39. Yuezhan Feng, Gaojie Han, Bo Wang, Xingping Zhou, Jianmin Ma, Yunsheng Ye, Chuntai Liu, and Xiaolin Xie, Chem. Eng. J., 379: 122402 (2019); https://doi.org/10.1016/j.cej.2019.122402
  40. Xian-feng Meng, Dong-hong Li, Xiang-qian Shen, and Wei Liu, Appl. Surf. Sci., 256, Iss. 12: 3753 (2010); https://doi.org/10.1016/j.apsusc.2010.01.019
  41. Min Li, Yanhui Song, Chao Zhang, Zhenzhong Yong, Jian Qiao, Dongmei Hu, Zuoguang Zhang, Huazhen Wei, Jiangtao Di, and Qingwen Li, Carbon, 146: 627 (2019); https://doi.org/10.1016/j.carbon.2019.02.003
  42. Wen-Tao Cao, Fei-Fei Chen, Ying-Jie Zhu, Yong-Gang Zhang, Ying-Ying Jiang, Ming-Guo Ma, and Feng Chen, ACS Nano, 12, Iss. 5: 4583 (2018); https://doi.org/10.1021/acsnano.8b00997
  43. Shi-Jun Wang, Dian-Sen Li, and Lei Jiang, Adv. Mater. Interfac., 6, Iss. 19: 1900961 (2019); https://doi.org/10.1002/admi.201900961
  44. Houbao Liu, Renli Fu, Xinqing Su, Binyong Wu, He Wang, Yue Xu, and Xuhai Liu, Compos. Commun., 23: 100593 (2021); https://doi.org/10.1016/j.coco.2020.100593
  45. Lei Wang, Lixin Chen, Ping Song, Chaobo Liang, Yuanjin Lu, Hua Qiu, Yali Zhang, Jie Kong, and Junwei Gu, Composites Part B: Engineering, 171: 111 (2019); https://doi.org/10.1016/j.compositesb.2019.04.050
  46. Ruiting Liu, Miao Miao, Yahui Li, Jianfeng Zhang, Shaomei Cao, and Xin Feng, ACS Appl. Mater. Interfaces, 10, Iss. 51: 44787 (2018); https://doi.org/10.1021/acsami.8b18347
  47. Zhaoqing Lu, Fengfeng Jia, Longhai Zhuo, Doudou Ning, Kun Gao, and Fan Xie, Composites Part B: Engineering, 217: 108853 (2021); https://doi.org/10.1016/j.compositesb.2021.108853
  48. Jia-Qi Luo, Sai Zhao, Hao-Bin Zhang, Zhiming Deng, Lulu Li, and Zhong-Zhen Yu, Comput. Sci. Technol., 182: 107754 (2019); https://doi.org/10.1016/j.compscitech.2019.107754
  49. Ying Shang, Youxin Ji, Jingwen Dong, Gui Yang, Xiaodong Zhang, Fengmei Su, Yuezhan Feng, and Chuntai Liu, Compos. Sci. Technol., 214: 108974 (2021); https://doi.org/10.1016/j.compscitech.2021.108974
  50. Hailong Xu, Xiaowei Yin, Xinliang Li, Minghang Li, Shuang Liang, Litong Zhang, and Laifei Cheng, Appl. Mater. Interf., 11, Iss. 10: 10198 (2019); https://doi.org/10.1021/acsami.8b21671
  51. Wenhua Cheng, Yan Zhang, Wenxiang Tian, Jiajia Liu, Jingyi Lu, Bibo Wang, Weiyi Xing, and Yuan Hu, Ind. Eng. Res., 59, Iss. 31: 14025 (2020); https://doi.org/10.1021/acs.iecr.0c02618
  52. Xiansheng Zhang, Xifeng Wang, Zhiwei Lei, Lili Wang, Mingwei Tian, Shifeng Zhu, Hong Xiao, Xiaoning Tang, and Lijun Qu, ACS Appl. Mater., 12, Iss. 12: 14459 (2020); https://doi.org/10.1021/acsami.0c01182
  53. Jianyu Zhai, Ce Cui, Ang Li, Ronghui Guo, Cheng Cheng, Erhui Ren, Hongyan Xiao, Mi Zhou, and Jinwei Zhang, Ceram. Int., 48, Iss. 10: 13464 (2022); https://doi.org/10.1016/j.ceramint.2022.01.224
  54. Xifeng Wang, Zhiwei Lei, Xianda Ma, Guifang He, Tong Xu, Jing Tan, Lili Wang, Xiansheng Zhang, Lijun Qu, and Xueji Zhang, Chem. Eng. J., 430, Pt. 1: 132605 (2022); https://doi.org/10.1016/j.cej.2021.132605
  55. Dan-Yang Li, Liu-Xin Liu, Qi-Wei Wang, Hao-Bin Zhang, Wei Chen, Guang Yin, and Zhong-Zhen Yu, ACS Appl. Mater. Interfaces, 14, Iss. 10: 12703 (2022); https://doi.org/10.1021/acsami.2c00797
  56. Xinli Liu, Jisi Wu, Jun He, and Lei Zhang, Mater. Lett., 205: 261 (2017); https://doi.org/10.1016/j.matlet.2017.06.101
  57. Hengyu Zhang, Jianying Chen, Hui Ji, Ni Wang, Shuo Feng, and Hong Xiao, Textil. Res. J., 91, Iss. 21–22: 1 (2021); https://doi.org/10.1177/00405175211006216
  58. Ye Yuan, Weilong Yin, Minglong Yang, Fan Xu, Xu Zhao, Jianjun Li, Qingyu Peng, Xiaodong He, Shanyi Du, and Yibin Li, Carbon, 130: 59 (2018); https://doi.org/10.1016/j.carbon.2017.12.122
  59. Polina P. Kuzhir, Alesia G. Paddubskaya, Nadezhda I. Volynets, Konstantin G. Batrakov, Tommi Kaplas, Patrizia Lamberti, Rumiana Kotsilkova, and Philippe Lambin, J. Nanophotonics, 11, Iss. 3: 032504 (2017); https://doi.org/10.1117/1.JNP.11.032504
  60. Qin-Yi Li, Tianli Feng, Wakana Okita, Yohei Komori, Hiroo Suzuki, Toshiaki Kato, Toshiro Kaneko, Tatsuya Ikuta, Xiulin Ruan, and Koji Takahashi, ACS Nano, 13, Iss. 8: 9182 (2019); https://doi.org/10.1021/acsnano.9b03521
  61. Xiaohui Ma, Bin Shen, Lihua Zhang, Zeping Chen, Yinfeng Liu, Wentao Zhai, and Wenge Zheng, ACS Sustain. Chem. Eng., 7, Iss. 10: 9663 (2019); https://doi.org/10.1021/acssuschemeng.9b01288
  62. Chaobo Liang, Hua Qiu, Ping Song, Xuetao Shi, Jie Kong, and Junwei Gu, Sci. Bull., 65, Iss. 8: 616 (2020); https://doi.org/10.1016/j.scib.2020.02.009
  63. Guo-Ming Weng, Jinyang Li, Mohamed Alhabeb, Christopher Karpovich, Hang Wang, Jason Lipton, Kathleen Maleski, Jaemin Kong, Evyatar Shaulsky, Menachem Elimelech, Yury Gogotsi, and André D. Taylor, Adv. Funct. Mater., 28, Iss. 44: 1803360 (2018); https://doi.org/10.1002/adfm.201803360
  64. Guang Yin, Yu Wang, Wei Wang, and Dan Yu, Colloids Surf. A, 601: 125047 (2020); https://doi.org/10.1016/j.colsurfa.2020.125047
  65. Rongliang Yang, Xuchun Gui, Li Yao, Qingmei Hu, Leilei Yang, Hao Zhang, Yongtao Yao, Hui Mei, and Zikang Tang, Nano-Micro Lett., 13: Article No. 66 (2021); https://doi.org/10.1007/s40820-021-00597-4
  66. B. Aïssa, A. Sinopoli, A. Ali, Y. Zakaria, A. Zekri, M. Helal, M. Nedil, F. Rosei, S. Mansour, and K. A. Mahmoud, Carbon, 173: 528 (2021); https://doi.org/10.1016/j.carbon.2020.11.024
  67. Peng Yan, Fanrong Ai, Chuanliang Cao, and Zhongmin Luo, J. Mater. Sci. Mater. Electron., 30: 14120 (2019); https://doi.org/10.1007/s10854-019-00959-0
  68. Heng Luo, Wanlin Feng, Congwei Liao, Lianwen Deng, Sheng Liu, Haibin Zhang, and Peng Xiao, J. Appl. Phys., 123: 104103 (2018); https://doi.org/10.1063/1.5008323
  69. Caiyun Liang and Zhijiang Wang, Chem. Eng. J., 373: 598 (2019); https://doi.org/10.1016/j.cej.2019.05.076
  70. Xinliang Li, Xiaowei Yin, Changqing Song, Meikang Han, Hailong Xu, Wenyan Duan, Laifei Cheng, and Litong Zhang, Adv. Funct. Mater., 28, Iss. 41: 1803938 (2018); https://doi.org/10.1002/adfm.201803938
  71. Wanlin Feng, Heng Luo, Sifan Zeng, Chen Chen, Lianwen Deng, Yongqiang Tan, Xiaosong Zhou, Shuming Peng, and Haibin Zhang, Mater. Chem. Front., 2: 2320 (2018); https://doi.org/10.1039/C8QM00436F
  72. Sonam Kumari, Neetu Dhanda, Atul Thakur, Satyendra Singh, and Preeti Thakur, Mater. Chem. Phys., 297: 127394 (2023); https://doi.org/10.1016/j.matchemphys.2023.127394
  73. Shilpa Taneja, Deepika Chahar, Preeti Thakur, and Atul Thakur, J. Alloys Compd., 859: 157760 (2021); https://doi.org/10.1016/j.jallcom.2020.157760
  74. Pinki Punia, Preeti Thakur, Rakesh Kumar, Rajat Syal, Rakesh Dhar, and Atul Thakur, J. Alloys Compd., 928: 167248 (2022); https://doi.org/10.1016/j.jallcom.2022.167248
  75. Shilpa Taneja, Preeti Thakur, Blaise Ravelo, and Atul Thakur, Mater. Res. Bull., 154: 111937 (2022); https://doi.org/10.1016/j.materresbull.2022.111937
  76. Synthesis and Applications of Nanoparticles (Eds. Atul Thakur, Preeti Thakur, and S. M. Paul Khurana) (Singapore: Springer: 2022).
  77. Hua-Yao Li, Liang Huang, Xiao-Xue Wang, Chul-Soon Lee, Ji-Wook Yoon, Jun Zhou, Xin Guo, and Jong-Heun Lee, RSC Adv., 7: 3680 (2017); https://doi.org/10.1039/C7RA03402D
  78. Baiwen Deng, Lihao Wang, Zhen Xiang, Zhicheng Liu, Fei Pan, and Wei Lu, Mater. Lett., 284, Pt. 1: 129029 (2021); https://doi.org/10.1016/j.matlet.2020.129029
  79. Yiming Lei, Zhengjun Yao, Shuzhou Li, Jintang Zhou, Azhar Ali Haidry, and Peijiang Liu, Ceram. Int., 46, Iss. 8, Pt. A: 10006 (2020); https://doi.org/10.1016/j.ceramint.2019.12.189
  80. Hua Qiu, Xian Luo, Jin Wang, Xiaolan Zhong, and Shuhua Qi, J. Electron. Mater., 48: 4400 (2019); https://doi.org/10.1007/s11664-019-07220-8
  81. Erqi Yang, Xiaosi Qi, Hongbo Cai, Ren Xie, Zhongchen Bai, Yang Jiang, Shuijie Qin, Wei Zhong, and Youwei Du, Mater. Sci. Eng. B, 238–239: 7 (2018); https://doi.org/10.1016/j.mseb.2018.12.009
  82. Zhen Wang, Zhi Cheng, Li Xie, Xianliang Hou, and Changqing Fang, Ceram. Int., 47, Iss. 4: 5747 (2021); https://doi.org/10.1016/j.ceramint.2020.10.161
  83. Hoyun Won, Yang-Ki Hong, Minyeong Choi, Hector Garcia, Dongmyung Shin, Young-Sik Yoon, Kwangjoo Lee, Hao Xin, and Chang-Dong Yeo, J. Magn. Magn. Mater., 560: 169523 (2022); https://doi.org/10.1016/j.jmmm.2022.169523
  84. Sumit Kumar, Parveen Kumar, Neelam Singh, Manish K. Kansal, Ashwani Kumar, and Vivek Verma, Mater. Sci. Eng. B, 282: 115798 (2022); https://doi.org/10.1016/j.mseb.2022.115798
  85. Jhilmil Swapnalin, Bhargavi Koneru, P. Banerjee, Srinivasan Natarajan, and A. Franco Jr., J. Phys. Chem. Solids, 168: 110797 (2022); https://doi.org/10.1016/j.jpcs.2022.110797
  86. Chi Yu, Junhao Peng, Jianhua Guo, Zhenhang Yin, Shixuan Lv, and Xinghua Jiang, ACS Appl. Electron. Mater., 4, Iss. 11: 5582 (2022); https://doi.org/10.1021/acsaelm.2c01168
  87. Siyao Guo, Hailong Guan, Ying Li, Yunfeng Bao, Dongyi Lei, Tiejun Zhao, Baomin Zhong, and Zhihong Li, J. Alloys Compd., 887: 161298 (2021); https://doi.org/10.1016/j.jallcom.2021.161298
  88. Dawei Liu, Rong Qiang, Yunchen Du, Ying Wang, Chunhua Tian, and Xijiang Han, J. Colloid Interface Sci., 514: 10 (2018); https://doi.org/10.1016/j.jcis.2017.12.013
  89. Yan Wang, Xiang Gao, Chenghao Lin, Liyuan Shi, Xuanhua Li, and Guanglei Wu, J. Alloys Compd., 785: 765 (2019); https://doi.org/10.1016/j.jallcom.2019.01.271
  90. Nikolaos Kostoglou, Christian Koczwara, Christian Prehal, Velislava Terziyska, Biljana Babic, Branko Matovic, Georgios Constantinides, Christos Tampaxis, Georgia Charalambopoulou, Theodore Steriotis, Steve Hinder, Mark Baker, Kyriaki Polychronopoulou, Charalabos Doumanidis, Oskar Paris, Christian Mitterer, and Claus Rebholz, Nano Energy, 40: 49 (2017); https://doi.org/10.1016/j.nanoen.2017.07.056
  91. Lin Long, Erqi Yang, Xiaosi Qi, Ren Xie, Zhong-chen Bai, Shuijie Qin, Chaoyong Deng, and Wei Zhong, ACS Sustain. Chem. Eng., 8, Iss. 1: 613 (2020); https://doi.org/10.1021/acssuschemeng.9b06205
  92. Han Hu, Buyuan Guan, Baoyu Xia, and Xiong Wen (David) Lou, J. Am. Chem. Soc., 137, Iss. 16: 5590 (2015); https://doi.org/10.1021/jacs.5b02465
  93. Mingyue Kong, Zirui Jia, Bingbing Wang, Jinlei Dou, Xuehua Liu, Yuhao Dong, Binghui Xu, and Guanglei Wu, Sustain. Mater. Technol., 26: e00219 (2020); https://doi.org/10.1016/j.susmat.2020.e00219
  94. Fei Wu, Zihao Liu, Jiqi Wang, Tariq Shah, Pei Liu, Qiuyu Zhang, Baoliang Zhang, Chem. Eng. J., 422: 130591 (2021); https://doi.org/10.1016/j.cej.2021.130591
  95. Kishore Chand, Xiao Zhang, and Yujin Chen, Arabian Journal of Chemistry, 15: 104143 (2022); https://doi.org/10.1016/j.arabjc.2022.104143