Download the full version of the article (PDF) Open Access
1Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., UA-01601 Kyiv, Ukraine
2Sumy State University, 116, Kharkivska Str., UA-40007 Sumy, Ukraine
3Institute for Low Temperature Physics and Engineering, N.A.S. of Ukraine, 47, Nauky Ave., UA-61103 Kharkiv, Ukraine
4A. S. Makarenko Sumy State Pedagogical University, 87, Romenska Str., UA-40002 Sumy, Ukraine

Size Effects in 'Symmetric' Magnetically Ordered Three-Layer Films

619–632 (2025)

PACS numbers: 72.25.Mk, 73.40.Jn, 73.61.At, 75.47.De, 75.47.Np, 81.40.Rs, 85.70.Kh

Size effects in the magnetoresistive properties of the magnetically ordered 'symmetric' Fe0.8Ni0.2/Cu/Fe0.8Ni0.2/S sandwiches obtained by the layer-by-layer metal condensation with the subsequent heat treatment in the temperature range of (3–5)×102 K are studied experimentally and theoretically using the generalized Dieny formulas [1, 2]. At small (large) thickness values of the covering magnetic layer in comparison with the total thickness of the interfaces, non-magnetic interlayer, and basic magnetic layer, the numerical value of the magnetoresistance ratio δ is negligible due to the shunting of the covering-layer resistance by the resistance of the basic magnetic layer, non-magnetic layer, and interfaces (resistance shunting of the basic layer, non-magnetic interlayer, and interfaces by the covering magnetic-layer resistance). In the absence of the shunting effect, i.e., when the covering magnetic-layer thickness coincides with the thickness of the interfaces, interlayer, and basic magnetic layer, the value δ in a 'symmetric' three-layered film acquires its maximum value. In the case of an increase in the non-magnetic-layer thickness (interface thickness between the basic magnetic layer and the spacer), provided that the magnetic-layer thickness of the metal and the interfaces (magnetic-layer thickness of the metal, spacer, and interface between the overlapping magnetic layer and the interlayer) do not change, the magnetoresistance ratio decreases monotonically with an increase in the spacer (interface) thickness due to an increase in the scattering probability of the majority charge carriers within their volumes that leads to a decrease in the interplay between the magnetic layers due to the spin-polarized charge carriers and, as a result, to a decrease in the magnetoresistance ratio in a 'symmetric' magnetically-ordered sandwich.

KEY WORDS: magnetically ordered 'symmetric' sandwich, giant magnetoresistance effect, magnetoresistance ratio, generalized Dieny formula, shunting effect, interfaces, basic and covering magnetic layers, interlayer

DOI: https://doi.org/10.15407/nnn.23.03.0619

Citation:
O. I. Mokhonko, Yu. M. Shabelnyk, Yu. O. Kolesnichenko, D. I. Saltykov, I. I. Slyusarenko, S. V. Hakhovych, Yu. O. Shkurdoda, L. V. Dekhtyaruk, and A. M. Chornous, Size Effects in 'Symmetric' Magnetically Ordered Three-Layer Films, Nanosistemi, Nanomateriali, Nanotehnologii, 23, No. 3: 619–632 (2025); https://doi.org/10.15407/nnn.23.03.0619

Funding / Acknowledgments:
The work was supported by the grant of the Ministry of Education and Science of Ukraine for 2022–2024 (No. 0122U000785), the WPI fellowships program for Ukrainian researchers (2023/2024), and funded by the IEEE Magnetics Society (STCU Project No. 9918).

REFERENCES
  1. B. Dieny, P. Humbert, V. S. Speriosu, S. Metin, B. A. Gurney, P. Baumgart, and H. Lefakis, Phys. Rev. B, 45, No. 2: 806 (1992); https://doi.org/10.1103/PhysRevB.45.806
  2. V. S. Speriosu, B. Dieny, P. Humbert, B. A. Gurney, and H. Lefakis, Phys. Rev. B, 44, No. 10: 5358 (1991); https://doi.org/10.1103/PhysRevB.44.5358
  3. I. Bakonyi and L. Péter, Prog. Mater. Sci., 55: 107 (2010); https://doi.org/10.1016/j.pmatsci.2009.07.001
  4. O. I. Tovstolytkin, M. O. Borovyy, V. V. Kurylyuk, and Yu. A. Kunyts'kyy, Fizychni Osnovy Spintroniky (Vinnytsya: Nilan-LTD: 2014) (in Ukrainian).
  5. Yu. O. Shkurdoda, A. M. Chornous, Yu. M. Shabelnyk, and V. B. Loboda, J. Magn. Magn. Mater., 443: 190 (2017); https://doi.org/10.1016/j.jmmm.2017.07.078
  6. Igor Žutić, Jaroslav Fabian, and S. Das Sarma, Rev. Modern Phys., 76, No. 2: 323 (2004); https://doi.org/10.1103/RevModPhys.76.323
  7. V. H. Dorohan and F. V. Motsnyi, Ukr. J. Phys., 49, No. 12: 1174 (2004) (in Ukrainian).
  8. E. Y. Tsymbal and D. G. Pettifor, Perspectives of giant magnetoresistance. Solid State Physics (Ed. by H. Ehrenreich and F. Spaepen) (San Diego, CA: Academic Press: 2001).
  9. A. M. Pohorilyi, S. M. Riabchenko, and O. I. Tovstolytkin, Ukr. Fiz. Zh. Ohl-iady, 6, No. 1: 37 (2010) (in Ukrainian).
  10. D. I. Saltykov, Yu. O. Shkurdoda, and I. Yu. Protsenko, J. Nano- Electron. Phys., 10, No. 4: 04031 (2018); https://dx.doi.org/10.21272/jnep.10(4).04031
  11. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B, 39, No. 7: 4828(R) (1989); https://doi.org/10.1103/PhysRevB.39.4828
  12. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett., 61: 2472 (1988); https://doi.org/10.1103/PhysRevLett.61.2472
  13. A. Chornous, L. Dekhtyaruk, M. Marszalek, and I. Protsenko, Cryst. Res. Technol., 41, No. 4: 388 (2006); https://doi.org/10.1002/crat.200510592
  14. R. Dimmich and F. Warkusz, Thin Solid Films, 102, No. 2: 103 (1983); https://doi.org/10.1016/0040-6090(83)90130-X
  15. F. Khater, Acta Physica Slovaca, 33, No. 1: 43 (1983); http://www.physics.sk/aps/pubs/1983/aps_1983_33_1_43.pdf
  16. Yu. O. Shkurdoda, L. V. Dekhtyaruk, A. G. Basov, A. M. Chornous, Yu. M. Shabelnyk, A. P. Kharchenko, and T. M. Shabelnyk, J. Magn. Magn. Mater., 477: 88 (2019); https://doi.org/10.1016/j.jmmm.2019.01.040
  17. Yu. O. Shkurdoda, L. V. Dekhtyaruk, A. M. Chornous, A. G. Basov, and A. P. Kharchenko, Proc. Int. Conf. Nanomater.: Appl. Prop. (Sept. 14–19, 2016, Lviv) (Sumy: 2016), vol. 5, No. 2, p. 02MFPM03; https://doi.org/10.1109/NAP.2016.7757282
  18. L. V. Dekhtyaruk, Metallofiz. Noveishie Tekhnol., 30, No. 2: 219 (2008) (in Ukrainian).
  19. Yu. O. Shkurdoda, L. V. Dekhtyaruk, A. G. Basov, A. P. Kharchenko, A. M. Chornous, and Yu. M. Shabelnyk, Eur. Phys. J. B, 91: 300 (2018); https://doi.org/10.1140/epjb/e2018-90315-2
  20. L. V. Dekhtyaruk and Yu. A. Kolesnichenko, Fiz. Met. Metalloved., 75, No. 5: 21 (1993) (in Russian).
  21. L. V. Dekhtyaruk, I. M. Pazukha, S. I. Protsenko, and I. V. Cheshko, Phys. Solid State, 48, No. 10: 1831 (2006); https://doi.org/10.1134/S1063783406100015
  22. Yu. M. Shabelnyk, I. O. Shpetny, A. P. Kharchenko, L. V. Dekhtyaruk, A. M. Chornous, D. I. Saltykov, Yu. O. Shkurdoda, and V. I. Virchenko, Proc. Int. Conf. Nanomater.: Appl. Prop. (Sept. 5–11, 2021, Odesa) (Sumy: 2021), p. NMM07; https://doi.org/10.1109/NAP51885.2021.9568401
  23. Magnetoelectronics (Ed. by M. Johnson) (Elsevier–Academic Press: 2004).
  24. S. S. P. Parkin, Annu. Rev. Mater. Sci., 25: 357 (1995); https://doi.org/10.1146/annurev.ms.25.080195.002041