2Karaganda Industrial University, 30, Republic Ave., KZ-101400 Temirtau, Kazakhstan
Study of Copper Microstructure after ECAP and Rolling
603–610 (2025)
PACS numbers: 06.60.Vz, 61.72.Mm, 62.20.fk, 62.23.St, 68.37.Lp, 81.20.Hy, 83.50.Uv
Received 25 February, 2024; in revised form, 26 February, 2024
In this article, the evolution of copper grade microstructure after equal-channel angular pressing (ECAP) and rolling is investigated. There is a relatively equiaxed ultrafine-grained structure formed after rolling after 10 passes of ECAP transformed into a lamellar structure with smaller grain-boundary spacing. After 10 passes of ECAP, the grain-boundary spacing is 180 nm, and it is reduced to 110 nm after rolling. Microstructure grinding during rolling almost does not occur. There is an increase in the share of large-angle boundary by 20% compared to the states after 10 passes of ECAP.
KEY WORDS: microstructure, severe plastic deformation, pressing, rolling
REFERENCES
- K. X. Wei, W. Wei, W. Wang, F. Du, and Q. B. Alexandrov, Mater. Sci. Eng. A, 528: 1478 (2011); https://doi.org/10.1016/j.msea.2010.10.059
- C. Zhu, A. Ma, J. Jiang, X. Li, D. Song, D. Yang, Y. Yuan, and J. Chen, J. Alloys Compd., 582: 135 (2014); https://doi.org/10.1016/j.jallcom.2013.08.007
- I. E. Volokitina, Prog. Phys. Met., 24, No. 3: 593 (2023); https://doi.org/10.15407/ufm.24.03.593
- A. Bychkov and A. Kolesnikov, Metallography, Microstructure, and Analysis, 12, No. 3: 564 (2023); https://doi.org/10.1007/s13632-023-00966-y
- I. E. Volokitina, A. V. Volokitin, M. A. Latypova, V. V. Chigirinsky, and A. S. Kolesnikov, Prog. Phys. Met., 24, No. 1: 132 (2023); https://doi.org/10.15407/ufm.24.01.132
- Nurlan Zhangabay, Islambek Baidilla, Askhat Tagybayev, Ulanbator Suleimenov, Zhangeldi Kurganbekov, Medetbek Kambarov, Alexandr Kolesnikov, Gulnaz Ibraimbayeva, Khassen Abshenov, Irina Volokitina, Bakhytzhan Nsanbayev, Yermek Anarbayev, and Pavel Kozlov, Case Stud. Constr. Mater., 18: e02161 (2023); https://doi.org/10.1016/j.cscm.2023.e02161
- Krzysztof Muszka, Lukasz Madej, and Janusz Majta, Mater. Sci. Eng. A, 574: 68 (2013); https://doi.org/10.1016/j.msea.2013.03.024
- A. V. Volokitin, I. E. Volokitina, and E. A. Panin, Prog. Phys. Met., 23, No. 3: 411 (2022); https://doi.org/10.15407/ufm.23.04.684
- V. D. Sitdikov, I. V. Alexandrov, M. M. Ganiev, E. I. Fakhretdinova, and G. I. Raab, Rev. Adv. Mater. Sci., 41, No. 1: 41 (2015).
- E. P. Orlova, G. G. Kurapov, and A. Turdaliev, J. Chem. Technol. Metall., 51, No. 4: 451 (2016).
- T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, Science, 331: 1587 (2011); https://doi.org/10.1126/science.1200177
- M. Murugesan, D. Won, and J. Johnson, Materials, 12: 609 (2019); https://doi.org/10.3390/ma12040609
- C. Z. Duan and L. C. Zhang, Materials Science and Engineering A, 532: 111 (2012); https://doi.org/10.1016/j.msea.2011.10.071
- I. Volokitina, J. Chem. Technol. Metall., 57, No. 3: 631 (2022).
- A. Denissova, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Y. Kuatbay, and Y. Liseitsev, Case Stud. Constr. Mater., 18: e02346 (2023); https://doi.org/10.1016/j.cscm.2023.e02346
- I. Volokitina, A. Volokitin, and D. Kuis, J. Chem. Technol. Metall., 56, No. 3: 643 (2021).
- A. V. Polyakov, I. P. Semenova, and G. I. Raab, Adv. Mater. Sci., 31, No. 1: 78 (2012).
- B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Stud. Constr. Mater., 18: e02162 (2023); https://doi.org/10.1016/j.cscm.2023.e02162
- E. Panin, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Z. Gelmanova, and Y. Liseitsev, Case Stud. Constr. Mater., 19: e02609 (2023); https://doi.org/10.1016/j.cscm.2023.e02609
- Sergey Lezhnev, Evgeniy Panin, and Irina Volokitina, Advanced Materials Research, 814: 68 (2013); https://doi.org/10.4028/www.scientific.net/AMR.814.68
- A. Naizabekov and E. Panin, Journal of Materials Engineering and Performance, 28, No. 3: 1762 (2019); https://doi.org/10.1007/s11665-019-3880-6