Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 2

 



Download the full version of the article (in PDF format)

Kenza ALMI, Said LAKEL, Maria Nor Elyakin BOUMEZRAG, and Hanna TOUHAMI

Laboratory of Metallic and Semiconducting Materials, University of Biskra, Biskra, Algeria

Synthesis and Characterization of CuO Nanoparticles: Effect of Rapid Thermal Annealing

523–538 (2025)

PACS numbers: 61.05.cp, 61.46.Df, 68.37.Hk, 78.30.Hv, 78.67.Bf, 81.07.Dc, 81.40.Ef

This work is a comparative study of the effect of two different annealing methods on the copper-oxide (CuO) nanoparticles’ properties. These later are synthesized using the direct precipitation method. Rapid thermal annealing (RTA) and slow thermal annealing (STA) are two methods of annealing tested. The prepared samples are annealed in air at various temperatures of 300, 400, 500°C for 1 hour. Then, they are characterized by employing scanning electron microscopy (SEM), x-ray diffraction (XRD), UV–visible and Fourier Transform Infrared (FT-IR) spectroscopies. The main results revealed an increase in the grain size with both methods as the annealing temperature increases. It reaches 30.93 nm with RTA and 26.75 nm with STA at 500°C. XRD spectra show, in the case of RTA at 500°C, a significant decrease in the intense picks corresponding to the (002) and (111) orientations. This result indicates that, beyond 400°C, one hour of RTA is not suitable for enhancing CuO-nanoparticles’ crystallinity compared to STA. The optical analysis demonstrates that the energy of the optical band gap in STA is higher than that in RTA. It reaches 2.88 eV at 500°C using RTA that is close to the gap value for CuO in the range of 1.8–2.8 eV. FT-IR results show, for both methods, the presence of characteristic peaks of the Cu–O bonds in the monoclinic CuO structure without any trace to Cu2O structure. Nevertheless, samples subject to RTA for one hour are more susceptible to absorbing species of C=O bond than those subject to STA. Hence, RTA at 500°C is far from producing CuO nanoparticles with preferred characteristics. It needs further research to examine higher-temperature annealing with controlling annealing time.

KEY WORDS: annealing methods, copper oxide, nanoparticles, nanoparticles’ synthesis methods, rapid thermal annealing

DOI:  https://doi.org/10.15407/nnn.23.02.0523

REFERENCES
  1. Ibrahim Khan, Khalid Saeed, and Idrees Khan, Arabian Journal of Chemistry, 12, No. 7: 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
  2. S. Rehman, A. Mumtaz, and S. K. Hasanain, Journal of Nanoparticle Research, 13: 2497 (2011); http://dx.doi.org/10.1007/s11051-010-0143-8
  3. S. Neeleshwar, C. L. Chen, C. B. Tsai, Y. Y. Chen, C. C. Chen, S. G. Shyu, and M. S. Seehra, Physical Review B, 71, Iss. 20: 201307 (2005); https://doi.org/10.1103/PhysRevB.71.201307
  4. S. Anandan, G. J. Lee, and J. J. Wu, Ultrasonics Sonochemistry, 19, Iss. 3: 682 (2012); https://doi.org/10.1016/j.ultsonch.2011.08.009
  5. Y. P. Sukhorukov, B. A. Gizhevskii, E. V. Mostovshchikova, A. Ye. Yermakov, S. N. Tugushev, and E. A. Kozlov, Technical Physics Letters, 32: 132 (2006); https://doi.org/10.1134/S1063785006020131
  6. H. Zhang and M. Zhang, Materials Chemistry and Physics, 108, Iss. 2–3: 184 (2008); https://doi.org/10.1016/j.matchemphys.2007.10.005
  7. H. S. Devi and T. D. Singh, Advances in Electronics and Electrical Engineering, 4, Iss. 1: 83 (2014).
  8. J. Zhu, D. Li, H. Chen, X. Yang, L. Lu, and X. Wang, Materials Letters, 58, Iss. 26: 3324 (2004); https://doi.org/10.1016/j.matlet.2004.06.031
  9. P. Mallick and S. Sahu, Nanoscience and Nanotechnology, 2, Iss. 3: 71 (2012); https://doi.org/10.5923/j.nn.20120203.05
  10. N. Touka, D. Tabli, K. Badari et al., Journal of Optoelectronics and Advanced Materials, 21, Iss. 12: 698 (2019).
  11. N. A. Raship, M. Z. Sahdan, F. Adriyanto, M. F. Nurfazliana, and A. S. Bakri, AIP Conference Proceedings, 1788, Iss. 1: 030121 (2017); https://doi.org/10.1063/1.4968374
  12. N. Serin, T. Serin, Ş. Horzum, and Y. Çelik, Semiconductor Science and Technology, 20, Iss. 5: 398 (2005); https://doi.org/10.1088/0268-1242/20/5/012
  13. S. Masudy-Panah, R. S. Moakhar, C. S. Chua, A. Kushwaha, T. I. Wong, and G. K. Dalapati, RSC Advances, 6, Iss. 35: 29383 (2016); https://doi.org/10.1039/C6RA03383K
  14. R. Gottesman, A. Song, I. Levine, M. Krause, A. N. Islam, D. Abou-Ras, T. Dittrich, R. van de Krol, and A. Chemseddine, Advanced Functional Materials, 30, Iss. 21: 1910832 (2020); https://doi.org/10.1002/adfm.201910832
  15. K. Bergum, H. N. Riise, S. Gorantla, P. F. Lindberg, I. J. T. Jensen, A. E. Gunnæs, A. Galeckas, S. Diplas, B. G. Svensson, and E. Monakhov, Journal of Physics: Condensed Matter, 30, Iss. 7: 075702 (2018); https://doi.org/10.1088/1361-648X/aaa5f4
  16. R. B. Vasiliev, M. N. Rumyantseva, N. V. Yakovlev, and A. M. Gaskov, Sensors and Actuators B: Chemical, 50, Iss. 3: 186 (1998); https://doi.org/10.1016/S0925-4005(98)00235-4
  17. T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi, and Y. Takita, Journal of Materials Chemistry, 8, Iss. 9: 2037 (1998); https://doi.org/10.1039/A801595C
  18. Sylvester Lekoo Mammah, Fidelix Ekeoma Opara, Valentine Benjamin Omubo-Pepple, Joseph Effiom-Edem Ntibi, Sabastine Chukwuemeka Ezugwu, and Fabian Ifeanyichukwu Ezema, Natural Science, 5, Iss. 3: 389 (2013); https://doi.org/10.4236/ns.2013.53052
  19. H. Hashim, S. F. A. Samat, S. S. Shariffudin, and P. S. M. Saad, IOP Conference Series: Materials Science and Engineering, 340, Iss. 1: 012008 (2018); https://doi.org/10.1088/1757-899X/340/1/012008
  20. D. Wojcieszak, A. Obstarczyk, E. Mańkowska, M. Mazur, D. Kaczmarek, K. Zakrzewska, P. Mazur, and J. Domaradzki, Materials Research Bulletin, 147: 111646 (2022); https://doi.org/10.1016/j.materresbull.2021.111646
  21. N. Al Armouzi, Gh. El Hallani, A. Liba, M. Zekraoui, H. S. Hilal, N. Kouider, and M. Mabrouki, Materials Research Express, 6, Iss. 11: 116405 (2019); https://doi.org/10.1088/2053-1591/ab44f3
  22. U. Akgul, K. Yildiz, and Y. Atici, The European Physical Journal Plus, 131, Iss. 89: 1 (2016); https://doi.org/10.1140/epjp/i2016-16089-3
  23. G. Martínez-Saucedo, G. Torres-Delgado, J. Márquez-Marín, O. Zelaya-Ángel, and R. Castanedo-Pérez, Journal of Alloys and Compounds, 859: 157790 (2021); https://doi.org/10.1016/j.jallcom.2020.157790
  24. L. Xiong, H. Xiao, S. Chen, Z. Chen, X. Yi, S. Wen, G. Zheng, Y. Ding, and H. Yu, RSC Advances, 4, Iss. 107: 62115 (2014); https://doi.org/10.1039/C4RA12406E
  25. Dongjing Liu, Weiguo Zhou, and Jiang Wu, The Canadian Journal of Chemical Engineering, 94, Iss. 12: 2276 (2016); https://doi.org/10.1002/cjce.22613
  26. A. Maini and M. A. Shah, International Journal of Ceramic Engineering & Science, 3, Iss. 4: 192 (2021); https://doi.org/10.1002/ces2.10097
  27. M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R. S. Varma, Chemical Reviews, 116, Iss. 6: 3722 (2016); https://doi.org/10.1021/acs.chemrev.5b00482
  28. Dongjing Liu, Weiguo Zhou, and Jiang Wu, The Canadian Journal of Chemical Engineering, 94, Iss. 12: 2276 (2016); https://doi.org/10.1002/cjce.22613
  29. G. Eranna, B. C. Joshi, D. P. Runthala, and R. P. Gupta, Critical Reviews in Solid State and Materials Sciences, 29, Iss. 3–4: 111 (2004); https://doi.org/10.1080/10408430490888977
  30. P. Gao, Y. Chen, H. Lv, X. Li, Y. Wang, and Q. Zhang, International Journal of Hydrogen Energy, 34, Iss. 7: 3065 (2009); https://doi.org/10.1016/j.ijhydene.2008.12.050
  31. T. I. Arbuzova, B. A. Gizhevskii, S. V. Naumov, A. V. Korolev, V. L. Arbuzov, K. V. Shal’nov, and A. P. Druzhkov, Journal of Magnetism and Magnetic Materials, 258: 342 (2003); https://doi.org/10.1016/S0304-8853(02)01052-1
  32. X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, The Journal of Physical Chemistry B, 108, Iss. 18: 5547 (2004); https://doi.org/10.1021/jp037075k
  33. P. P. C. Udani, P. V. D. S. Gunawardana, H. C. Lee, and D. H. Kim, International Journal of Hydrogen Energy, 34, Iss. 18: 7648 (2009); https://doi.org/10.1016/j.ijhydene.2009.07.035
  34. A. Toolabia, M. R. Zareb, A. Rahmanic, E. Hoseinzadehd, M. Sarkhoshe, and M. Zaref, J. Basic. Appl. Sci. Res., 3, Iss. 2: 221 (2013).
  35. S. Jadhav, S. Gaikwad, M. Nimse, and A. Rajbhoj, Journal of Cluster Science, 22: 121 (2011); https://doi.org/10.1007/s10876-011-0349-7
  36. A. Rahim, Z. U. Rehman, S. Mir, N. Muhammad, F. Rehman, M. H. Nawaz, M. Yaqub, S. A. Siddiqi, and A. A. Chaudhry, Journal of Molecular Liquids, 248: 425 (2017); https://doi.org/10.1016/j.molliq.2017.10.087
  37. D. Rehana, D. Mahendiran, R. S. Kumar, and A. K. Rahima, Biomedicine & Pharmacotherapy, 89: 1067 (2017); https://doi.org/10.1016/j.biopha.2017.02.101
  38. Sunday Adewale Akintelu, Aderonke Similoluwa Folorunso, Femi Adekunle Folorunso, and Abel Kolawole Oyebamiji, Heliyon, 6, Iss. 7: e04508 (2020); https://doi.org/10.1016/j.heliyon.2020.e04508
  39. Y. Unutulmazsoy, C. Cancellieri, L. Lin, and L. P. H. Jeurgens, Applied Surface Science, 588: 152896 (2022); https://doi.org/10.1016/j.apsusc.2022.152896
  40. T. T. Ha, B. T. Cong, P. N. Hai, N. Hoang, H. V. Chinh, B. T. Huong, N. T. Linh, B. T. Son, T. T. Q. Hoa, and T. N. Viet, VNU Journal of Science: Mathematics-Physics, 38, Iss. 2: 4642 (2022); https://doi.org/10.25073/2588-1124/vnumap.4642
  41. V. U. Siddiqui, A. Ansari, I. Khan, M. K. Akram, and W. A. Siddiqi, Materials Research Express, 6, Iss. 11: 115095 (2019); https://doi.org/10.1088/2053-1591/ab4ace
  42. S. N. Khan, S. Ge, E. Gu, S. K. Karunakaran, W. Yang, R. Hong, Y. Mai, X. Lin, and G. Yang, Advanced Materials Interfaces, 8, Iss. 18: 2100971 (2021); https://doi.org/10.1002/admi.202100971
  43. Roland Mainz, B. C. Walker, S. S. Schmidt, O. Zander, A. Weber, H. Rodriguez-Alvarez, J. Just, M. Klaus, R. Agrawal, and T. Unold, Physical Chemistry Chemical Physics, 15, Iss. 41: 18281 (2013); https://doi.org/10.1039/C3CP53373E
  44. A. A. Baqer, K. A. Matori, N. M. Al-Hada, A. H. Shaari, H. M. Kamari, E. Saion, J. L. Y. Chyi, and C. Azurahanim Abdullah, Results in Physics, 9: 471 (2018); https://doi.org/10.1016/j.rinp.2018.02.079
  45. A. Rollett, F. J. Humphreys, G. S. Rohrer, and G. H. Hatherly, Recrystallization and Related Annealing Phenomena (Burlington: Elsevier Science: 2004), 658 p.
  46. Y. C. Lee, S. Y. Hu, W. Water, K. K. Tiong, Z. C. Feng, Y. T. Chen, J. C. Huang, J. W. Lee, C. C. Huang, J. L. Shen, and Mou-Hong Cheng, Journal of Luminescence, 129, Iss. 2: 148 (2009); https://doi.org/10.1016/j.jlumin.2008.09.003
  47. M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14, Iss. 4: 2220 (1996); https://doi.org/10.1116/1.580050
  48. P. Cotterill and P. R. Mould, Recrystallization and Grain Growth in Metals (London: Surrey Univ. Press: 1976), 409 p.
  49. P. R. Rios, F. Siciliano Jr., H. R. Z. Sandim, R. L. Plaut, and A. F. Padilha, Materials Research, 8: 225 (2005); https://doi.org/10.1590/S1516-14392005000300002
  50. L. Zhou, S. Wang, H. Ma, S. Ma, D. Xu, and Y. Guo, Chemical Engineering Research and Design, 98: 36 (2015); https://doi.org/10.1016/j.cherd.2015.04.004
  51. D. Z. Voyiadjis, D. Faghihi, and Y. Zhang, International Journal of Solids and Structures, 51, Iss. 10: 1872 (2014); https://doi.org/10.1016/j.ijsolstr.2014.01.020
  52. N. Ghobadi, International Nano Letters, 3, Iss. 1: 2 (2013); https://doi.org/10.1186/2228-5326-3-2
  53. J. M. Aguirre, A. Gutiérrez, and O. Giraldo, Journal of the Brazilian Chemical Society, 22: 546 (2011); https://doi.org/10.1590/S0103-50532011000300019
  54. C. Henrist, K. Traina, C. Hubert, G. Toussaint, A. Rulmont, and R. Cloots, Journal of Crystal Growth, 254, Iss. 1–2: 176 (2003); https://doi.org/10.1016/S0022-0248(03)01145-X
  55. J. Liu, X. Huang, Y. Li, K. M. Sulieman, X. He, and F. Sun, Journal of Materials Chemistry, 16, Iss. 45: 4427 (2006); https://doi.org/10.1039/C6DT04500F
  56. F. A. Akgul, G. Akgul, N. Yildirim, H. E. Unalan, and R. Turan, Materials Chemistry and Physics, 147, Iss. 3: 987 (2014); https://doi.org/10.1016/j.matchemphys.2014.06.047
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSYSTEMS, NANOMATERIALS, NANOTECHNOLOGIES G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement