Download the full
version of the article (in PDF format)
Kenza ALMI, Said LAKEL, Maria Nor Elyakin BOUMEZRAG, and Hanna TOUHAMI
Laboratory of Metallic and Semiconducting Materials, University of Biskra, Biskra, Algeria
Synthesis and Characterization of CuO Nanoparticles: Effect of Rapid Thermal Annealing
523–538 (2025)
PACS numbers: 61.05.cp, 61.46.Df, 68.37.Hk, 78.30.Hv, 78.67.Bf, 81.07.Dc, 81.40.Ef
This work is a comparative study of the effect of two different annealing methods on the copper-oxide (CuO) nanoparticles’ properties. These later are synthesized using the direct precipitation method. Rapid thermal annealing (RTA) and slow thermal annealing (STA) are two methods of annealing tested. The prepared samples are annealed in air at various temperatures of 300, 400, 500°C for 1 hour. Then, they are characterized by employing scanning electron microscopy (SEM), x-ray diffraction (XRD), UV–visible and Fourier Transform Infrared (FT-IR) spectroscopies. The main results revealed an increase in the grain size with both methods as the annealing temperature increases. It reaches 30.93 nm with RTA and 26.75 nm with STA at 500°C. XRD spectra show, in the case of RTA at 500°C, a significant decrease in the intense picks corresponding to the (002) and (111) orientations. This result indicates that, beyond 400°C, one hour of RTA is not suitable for enhancing CuO-nanoparticles’ crystallinity compared to STA. The optical analysis demonstrates that the energy of the optical band gap in STA is higher than that in RTA. It reaches 2.88 eV at 500°C using RTA that is close to the gap value for CuO in the range of 1.8–2.8 eV. FT-IR results show, for both methods, the presence of characteristic peaks of the Cu–O bonds in the monoclinic CuO structure without any trace to Cu2O structure. Nevertheless, samples subject to RTA for one hour are more susceptible to absorbing species of C=O bond than those subject to STA. Hence, RTA at 500°C is far from producing CuO nanoparticles with preferred characteristics. It needs further research to examine higher-temperature annealing with controlling annealing time.
KEY WORDS: annealing methods, copper oxide, nanoparticles, nanoparticles’ synthesis methods, rapid thermal annealing
DOI: https://doi.org/10.15407/nnn.23.02.0523
REFERENCES
- Ibrahim Khan, Khalid Saeed, and Idrees Khan, Arabian Journal of Chemistry, 12, No. 7: 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
- S. Rehman, A. Mumtaz, and S. K. Hasanain, Journal of Nanoparticle Research, 13: 2497 (2011); http://dx.doi.org/10.1007/s11051-010-0143-8
- S. Neeleshwar, C. L. Chen, C. B. Tsai, Y. Y. Chen, C. C. Chen, S. G. Shyu, and M. S. Seehra, Physical Review B, 71, Iss. 20: 201307 (2005); https://doi.org/10.1103/PhysRevB.71.201307
- S. Anandan, G. J. Lee, and J. J. Wu, Ultrasonics Sonochemistry, 19, Iss. 3: 682 (2012); https://doi.org/10.1016/j.ultsonch.2011.08.009
- Y. P. Sukhorukov, B. A. Gizhevskii, E. V. Mostovshchikova, A. Ye. Yermakov, S. N. Tugushev, and E. A. Kozlov, Technical Physics Letters, 32: 132 (2006); https://doi.org/10.1134/S1063785006020131
- H. Zhang and M. Zhang, Materials Chemistry and Physics, 108, Iss. 2–3: 184 (2008); https://doi.org/10.1016/j.matchemphys.2007.10.005
- H. S. Devi and T. D. Singh, Advances in Electronics and Electrical Engineering, 4, Iss. 1: 83 (2014).
- J. Zhu, D. Li, H. Chen, X. Yang, L. Lu, and X. Wang, Materials Letters, 58, Iss. 26: 3324 (2004); https://doi.org/10.1016/j.matlet.2004.06.031
- P. Mallick and S. Sahu, Nanoscience and Nanotechnology, 2, Iss. 3: 71 (2012); https://doi.org/10.5923/j.nn.20120203.05
- N. Touka, D. Tabli, K. Badari et al., Journal of Optoelectronics and Advanced Materials, 21, Iss. 12: 698 (2019).
- N. A. Raship, M. Z. Sahdan, F. Adriyanto, M. F. Nurfazliana, and A. S. Bakri, AIP Conference Proceedings, 1788, Iss. 1: 030121 (2017); https://doi.org/10.1063/1.4968374
- N. Serin, T. Serin, Ş. Horzum, and Y. Çelik, Semiconductor Science and Technology, 20, Iss. 5: 398 (2005); https://doi.org/10.1088/0268-1242/20/5/012
- S. Masudy-Panah, R. S. Moakhar, C. S. Chua, A. Kushwaha, T. I. Wong, and G. K. Dalapati, RSC Advances, 6, Iss. 35: 29383 (2016); https://doi.org/10.1039/C6RA03383K
- R. Gottesman, A. Song, I. Levine, M. Krause, A. N. Islam, D. Abou-Ras, T. Dittrich, R. van de Krol, and A. Chemseddine, Advanced Functional Materials, 30, Iss. 21: 1910832 (2020); https://doi.org/10.1002/adfm.201910832
- K. Bergum, H. N. Riise, S. Gorantla, P. F. Lindberg, I. J. T. Jensen, A. E. Gunnæs, A. Galeckas, S. Diplas, B. G. Svensson, and E. Monakhov, Journal of Physics: Condensed Matter, 30, Iss. 7: 075702 (2018); https://doi.org/10.1088/1361-648X/aaa5f4
- R. B. Vasiliev, M. N. Rumyantseva, N. V. Yakovlev, and A. M. Gaskov, Sensors and Actuators B: Chemical, 50, Iss. 3: 186 (1998); https://doi.org/10.1016/S0925-4005(98)00235-4
- T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi, and Y. Takita, Journal of Materials Chemistry, 8, Iss. 9: 2037 (1998); https://doi.org/10.1039/A801595C
- Sylvester Lekoo Mammah, Fidelix Ekeoma Opara, Valentine Benjamin Omubo-Pepple, Joseph Effiom-Edem Ntibi, Sabastine Chukwuemeka Ezugwu, and Fabian Ifeanyichukwu Ezema, Natural Science, 5, Iss. 3: 389 (2013); https://doi.org/10.4236/ns.2013.53052
- H. Hashim, S. F. A. Samat, S. S. Shariffudin, and P. S. M. Saad, IOP Conference Series: Materials Science and Engineering, 340, Iss. 1: 012008 (2018); https://doi.org/10.1088/1757-899X/340/1/012008
- D. Wojcieszak, A. Obstarczyk, E. Mańkowska, M. Mazur, D. Kaczmarek, K. Zakrzewska, P. Mazur, and J. Domaradzki, Materials Research Bulletin, 147: 111646 (2022); https://doi.org/10.1016/j.materresbull.2021.111646
- N. Al Armouzi, Gh. El Hallani, A. Liba, M. Zekraoui, H. S. Hilal, N. Kouider, and M. Mabrouki, Materials Research Express, 6, Iss. 11: 116405 (2019); https://doi.org/10.1088/2053-1591/ab44f3
- U. Akgul, K. Yildiz, and Y. Atici, The European Physical Journal Plus, 131, Iss. 89: 1 (2016); https://doi.org/10.1140/epjp/i2016-16089-3
- G. Martínez-Saucedo, G. Torres-Delgado, J. Márquez-Marín, O. Zelaya-Ángel, and R. Castanedo-Pérez, Journal of Alloys and Compounds, 859: 157790 (2021); https://doi.org/10.1016/j.jallcom.2020.157790
- L. Xiong, H. Xiao, S. Chen, Z. Chen, X. Yi, S. Wen, G. Zheng, Y. Ding, and H. Yu, RSC Advances, 4, Iss. 107: 62115 (2014); https://doi.org/10.1039/C4RA12406E
- Dongjing Liu, Weiguo Zhou, and Jiang Wu, The Canadian Journal of Chemical Engineering, 94, Iss. 12: 2276 (2016); https://doi.org/10.1002/cjce.22613
- A. Maini and M. A. Shah, International Journal of Ceramic Engineering & Science, 3, Iss. 4: 192 (2021); https://doi.org/10.1002/ces2.10097
- M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R. S. Varma, Chemical Reviews, 116, Iss. 6: 3722 (2016); https://doi.org/10.1021/acs.chemrev.5b00482
- Dongjing Liu, Weiguo Zhou, and Jiang Wu, The Canadian Journal of Chemical Engineering, 94, Iss. 12: 2276 (2016); https://doi.org/10.1002/cjce.22613
- G. Eranna, B. C. Joshi, D. P. Runthala, and R. P. Gupta, Critical Reviews in Solid State and Materials Sciences, 29, Iss. 3–4: 111 (2004); https://doi.org/10.1080/10408430490888977
- P. Gao, Y. Chen, H. Lv, X. Li, Y. Wang, and Q. Zhang, International Journal of Hydrogen Energy, 34, Iss. 7: 3065 (2009); https://doi.org/10.1016/j.ijhydene.2008.12.050
- T. I. Arbuzova, B. A. Gizhevskii, S. V. Naumov, A. V. Korolev, V. L. Arbuzov, K. V. Shal’nov, and A. P. Druzhkov, Journal of Magnetism and Magnetic Materials, 258: 342 (2003); https://doi.org/10.1016/S0304-8853(02)01052-1
- X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, The Journal of Physical Chemistry B, 108, Iss. 18: 5547 (2004); https://doi.org/10.1021/jp037075k
- P. P. C. Udani, P. V. D. S. Gunawardana, H. C. Lee, and D. H. Kim, International Journal of Hydrogen Energy, 34, Iss. 18: 7648 (2009); https://doi.org/10.1016/j.ijhydene.2009.07.035
- A. Toolabia, M. R. Zareb, A. Rahmanic, E. Hoseinzadehd, M. Sarkhoshe, and M. Zaref, J. Basic. Appl. Sci. Res., 3, Iss. 2: 221 (2013).
- S. Jadhav, S. Gaikwad, M. Nimse, and A. Rajbhoj, Journal of Cluster Science, 22: 121 (2011); https://doi.org/10.1007/s10876-011-0349-7
- A. Rahim, Z. U. Rehman, S. Mir, N. Muhammad, F. Rehman, M. H. Nawaz, M. Yaqub, S. A. Siddiqi, and A. A. Chaudhry, Journal of Molecular Liquids, 248: 425 (2017); https://doi.org/10.1016/j.molliq.2017.10.087
- D. Rehana, D. Mahendiran, R. S. Kumar, and A. K. Rahima, Biomedicine & Pharmacotherapy, 89: 1067 (2017); https://doi.org/10.1016/j.biopha.2017.02.101
- Sunday Adewale Akintelu, Aderonke Similoluwa Folorunso, Femi Adekunle Folorunso, and Abel Kolawole Oyebamiji, Heliyon, 6, Iss. 7: e04508 (2020); https://doi.org/10.1016/j.heliyon.2020.e04508
- Y. Unutulmazsoy, C. Cancellieri, L. Lin, and L. P. H. Jeurgens, Applied Surface Science, 588: 152896 (2022); https://doi.org/10.1016/j.apsusc.2022.152896
- T. T. Ha, B. T. Cong, P. N. Hai, N. Hoang, H. V. Chinh, B. T. Huong, N. T. Linh, B. T. Son, T. T. Q. Hoa, and T. N. Viet, VNU Journal of Science: Mathematics-Physics, 38, Iss. 2: 4642 (2022); https://doi.org/10.25073/2588-1124/vnumap.4642
- V. U. Siddiqui, A. Ansari, I. Khan, M. K. Akram, and W. A. Siddiqi, Materials Research Express, 6, Iss. 11: 115095 (2019); https://doi.org/10.1088/2053-1591/ab4ace
- S. N. Khan, S. Ge, E. Gu, S. K. Karunakaran, W. Yang, R. Hong, Y. Mai, X. Lin, and G. Yang, Advanced Materials Interfaces, 8, Iss. 18: 2100971 (2021); https://doi.org/10.1002/admi.202100971
- Roland Mainz, B. C. Walker, S. S. Schmidt, O. Zander, A. Weber, H. Rodriguez-Alvarez, J. Just, M. Klaus, R. Agrawal, and T. Unold, Physical Chemistry Chemical Physics, 15, Iss. 41: 18281 (2013); https://doi.org/10.1039/C3CP53373E
- A. A. Baqer, K. A. Matori, N. M. Al-Hada, A. H. Shaari, H. M. Kamari, E. Saion, J. L. Y. Chyi, and C. Azurahanim Abdullah, Results in Physics, 9: 471 (2018); https://doi.org/10.1016/j.rinp.2018.02.079
- A. Rollett, F. J. Humphreys, G. S. Rohrer, and G. H. Hatherly, Recrystallization and Related Annealing Phenomena (Burlington: Elsevier Science: 2004), 658 p.
- Y. C. Lee, S. Y. Hu, W. Water, K. K. Tiong, Z. C. Feng, Y. T. Chen, J. C. Huang, J. W. Lee, C. C. Huang, J. L. Shen, and Mou-Hong Cheng, Journal of Luminescence, 129, Iss. 2: 148 (2009); https://doi.org/10.1016/j.jlumin.2008.09.003
- M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14, Iss. 4: 2220 (1996); https://doi.org/10.1116/1.580050
- P. Cotterill and P. R. Mould, Recrystallization and Grain Growth in Metals (London: Surrey Univ. Press: 1976), 409 p.
- P. R. Rios, F. Siciliano Jr., H. R. Z. Sandim, R. L. Plaut, and A. F. Padilha, Materials Research, 8: 225 (2005); https://doi.org/10.1590/S1516-14392005000300002
- L. Zhou, S. Wang, H. Ma, S. Ma, D. Xu, and Y. Guo, Chemical Engineering Research and Design, 98: 36 (2015); https://doi.org/10.1016/j.cherd.2015.04.004
- D. Z. Voyiadjis, D. Faghihi, and Y. Zhang, International Journal of Solids and Structures, 51, Iss. 10: 1872 (2014); https://doi.org/10.1016/j.ijsolstr.2014.01.020
- N. Ghobadi, International Nano Letters, 3, Iss. 1: 2 (2013); https://doi.org/10.1186/2228-5326-3-2
- J. M. Aguirre, A. Gutiérrez, and O. Giraldo, Journal of the Brazilian Chemical Society, 22: 546 (2011); https://doi.org/10.1590/S0103-50532011000300019
- C. Henrist, K. Traina, C. Hubert, G. Toussaint, A. Rulmont, and R. Cloots, Journal of Crystal Growth, 254, Iss. 1–2: 176 (2003); https://doi.org/10.1016/S0022-0248(03)01145-X
- J. Liu, X. Huang, Y. Li, K. M. Sulieman, X. He, and F. Sun, Journal of Materials Chemistry, 16, Iss. 45: 4427 (2006); https://doi.org/10.1039/C6DT04500F
- F. A. Akgul, G. Akgul, N. Yildirim, H. E. Unalan, and R. Turan, Materials Chemistry and Physics, 147, Iss. 3: 987 (2014); https://doi.org/10.1016/j.matchemphys.2014.06.047
|