Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 2

 



Download the full version of the article (in PDF format)

N. V. KRISHNA PRASAD1 and N. MADHAVI2

1Department of Physics, G.S.S, GITAM University, Bengaluru, India
2Govt. College (Autonomous), Department of Statistics, Rajhamundry, India


EMI Shielding with Textile Fabrics: An Unadorned Review

501–514 (2025)

PACS numbers: 81.05.U-, 81.05.Zx, 83.60.Np, 83.80.Mc, 85.40.Ls, 87.50.C-, 87.85.jf

Electromagnetic radiation emitted from various sources need to be shielded. Especially, in case of human beings, this is of prime significance. EMI shielding can be done using various shields with more and more flexibility through stretchable, bendable, and droppable shields. In view of human health and its importance, lot of emphasis has been laid in developing textile fabrics, which can exhibit shielding properties along with mechanical strength, based on textile structure and material. The required characteristics such as electric and magnetic properties in normal textile fabrics are not up to the mark. Hence, these properties are to be added. This can be achieved by coating the layer, conductive yarn or magnetic fibre integration, etc. Based on the previous work done, an attempt was made to review the various materials and their use for this very purpose. This mainly includes fabrics with metal coating, MXene coating, carbon coating, etc. It is observed that high conductivity and effective EMI shielding make MXenes to be in the forefront in EMI shielded fabrics, while other coatings (magnetic and conductive) will be the next choice.

KEY WORDS: textile fabrics, EMI shielding, shielding effectiveness

DOI:  https://doi.org/10.15407/nnn.23.02.0501

REFERENCES
  1. H. Wang, S. N. Li, M. Y. Liu, and Y. Zhou, Macromol. Mater. Eng., 306: 2100032 (2021); https://doi.org/10.1002/mame.202100032
  2. M. Y. Peng and F. X. Qin, J. Appl. Phys., 30: 225108 (2021); https://doi.org/10.1063/5.0075019
  3. Francis Francis, IEEE Proceeding (1997), p. 289–293.
  4. Saba Akram, Munir Ashraf, Amjed Javid, Hafiz Affan Abid, Sheraz Ahmad, Yasir Nawab, Abher Rasheed, Zhebin Xue, and Anum Nosheen, Synthetic Metals, 294: 117305 (2023); https://doi.org/10.1016/j.synthmet.2023.117305
  5. H. T. Guan and D. D. L. Chung, J. Mater. Sci., 56: 8037 (2021); doi:10.1007/s10853-021-05808-2
  6. M. W. Dai, Y. H. Zhai, and Y. Zhang, Chem. Eng. J., 421: 127749 (2021); https://doi.org/10.1016/j.cej.2020.127749
  7. Jan Mocha, Dariusz Wójcik, and Maciej Surma, Proc. SPIE, 1071507: 1 (2018); doi:10.1117/12.2317672
  8. J. H. Wu and D. D. L. Chung, Carbon, 40: 445 (2002); doi:10.1016/S0008-6223(01)00133-6
  9. J. S. Roh, Y. S. Chi, and T. J. Kang, Text. Res. J., 78: 825 (2008); https://doi.org/10.1177/152808371878331
  10. S. Ren, S. Guo, X. Liu, and Q. Liu, IEEE Trans. Magn., 52, No. 10: 9401907 (2016); doi:10.1109/TMAG.2016.2575803
  11. T. Blachowicz, A. Ehrmann, M. Malczyk, A. Stasiak, R. Osadnik, R. Paluch, M. Koruszc, J. Pawlyata, K. Lis, and K. Lehrich, ICECCME Proc. (2021), p. 1–8; doi:10.1109/ICECCME52200.2021.9591034
  12. Y. Y. Yao, S. H. Jin, H. M. Zou, L. J. Li, X. L. Ma, G. Lv, F. Gao, X. J. Lv, and Q. H. Shu, J. Mater. Sci., 56, No. 11: 6549 (2021); doi:10.1007/s10853-020-05635-x
  13. Y. P. Duan, S. H. Liu, and H. T. Guan, Sci. Technol. Adv. Mater., 6: No. 5: 513 (2005); doi:10.1016/j.stam.2005.01.002
  14. R. R. Liang, W. J. Cheng, H. Xiao, M. W. Shi, Z. H. Tang, and N. A. Wang, Text. Res. J., 88, No. 9: 973 (2018); doi:10.1177/0040517517693980
  15. D. D. L. Chung, Carbon, 39: 279 (2001); http://doi.org.S0008-6223(00)00184-6
  16. D. Knittel and E. Schollmeyer, Synthetic Met., 159: 14 (2009); https://doi.org/10.1016/j.synthmet.2009.03.021
  17. R. Kacprzyk, Fibres Text. East. Eur., 19, No. 01: 84 (2011).
  18. J. T. Meding, K. Tuvshinbayar, C. Dopke, and F. Tamoue, Commun. Dev. Assem. Text. Prod., 2: 1 (2021); doi:10.25367/cdatp.2021.2.p49-60
  19. A. Schwarz-Pfeiffer, M. Obermann, and M. O. Weber, IOP Conf. Ser. Mater. Sci. Eng., 141: 01 (2016); doi:10.1088/1757-899X/141/1/012008
  20. E. Pakdel, J. F. Wang, S. Kashi, L. Sun, and X. G. Wang, Adv. Coll. Interf. Sci., 277: 102116 (2020); doi:10.1016/j.cis.2020.102116
  21. G. Ehrmann, T. Blachowicz, S. V. Homburg, and A. Ehrmann, Bioengineering, 09: 02 (2022); doi:10.3390/bioengineering9020084
  22. V. Schneider, A. Reinholdt, U. Kreibig, T. Weirich, G. Guntherodt, B. Beschoten, A. Tillmanns, H. Krenn, K. Rumpf, and P. Granitzer, Z. Phys. Chem., 220: 02 (2006); https://doi.org/10.1524/zpch.2006.220.2.173
  23. T. Blachowicz, A. Tillmanns, M. Fraune, B. Beschoten, and G. Guntherodt, Phys. Rev. B, 75: 054425 (2007); doi:10.3390/coatings11020122
  24. A. Regtmeier, J. Meyer, N. Mill, M. Peter, A. Weddemann, J. Mattay, and A. Hutten, J. Magn. Magn. Mater., 326: 112 (2013); doi:10.1016/j.jmmm.2012.08.048
  25. Liyan Wang, Xiangting Dong, Guangqing Gai, Li Zhao, Shuzhi Xu, and Xinfu Xiao, J. Nanopart. Res., 17: Article No. 91 (2015); doi:10.1007/s11051-015-2910-z
  26. S. Geetha, K. K. S. Kumar, C. R. K. Rao, M. Vijayan, and D. C. Trivedi, J. Appl. Polym. Sci., 112: 2073 (2009); https://doi.org/10.1002/app.29812
  27. M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, Adv. Mater., 26: 7 (2014); doi:10.1002/adma.201304138
  28. M. W. Barsoum, Prog. Solid State Chem., 28: 1 (2000); https://doi.org/10.1016/S0079-6786(00)00006-6
  29. A. Sinha, Dhanjai, H. M. Zhao, Y. J. Huang, X. B. Lu, J. P. Chen, and R. Jain, TrAC Trends Anal. Chem., 105: 424 (2018); doi:10.1016/j.trac.2018.05.021
  30. C. Zhang, L. McKeon, M. P. Kremer, S. H. Park, O. Ronan, A. Seral-Ascasco, S. Barwich, C. O. Coileáin, N. McEvoy, H. C. Nerl, B. Anasori, J. N. Coleman, Y. Gogotsi, and V. Nicolosi, Nat. Commun., 10: 1795 (2019); doi:10.1038/s41467-019-09398-1
  31. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, ACS Nano, 6: 2 (2012); doi:10.1021/nn204153h
  32. E. Li, Y. M. Pan, C. F. Wang, C. T. Liu, C. Y. Shen, C. F. Pan, and X. H. Liu, ACS Appl. Mater. Interfaces, 13: 24 (2021); doi:10.1021/acsami.1c07976
  33. X. H. Zheng, P. Wang, X. S. Zhang, Q. L. Hu, Z. Q. Wang, W. Q. Nie, L. H. Zou, C. L. Li, and X. Han, Compos. A: Appl. Sci. Manuf., 152: 7 (2022); doi:10.1016/j.compositesa.2021.106700
  34. X. S. Zhang, X. F. Wang, Z. W. Lei, L. L. Wang, M. W. Tian, S. F. Zhu, H. Xiao, X. N. Tang, and L. J. Qu, ACS Appl. Mater. Interfaces, 12: 12 (2020); doi:10.1021/acsami.0c01182
  35. J. Yu, Z. L. Cui, Y. J. Lu, J. L. Zhao, Y. Zhang, G. Q. Fan, S. Y. Liu, Y. B. He, Y. H. Yu, and D. M. Qi, Compos. B: Eng., 224: 109193 (2021); doi:10.1016/j.compositesb.2021.109193
  36. D. J. Yao, Z. H. Tang, Z. H. Liang, L. Zhang, Q. J. Sun, J. M. Fan, G. K. Zhong, Q. X. Liu, Y. P. Jiang, X. G. Tang, V. A. L. Roy, and J. Ouyang, J. Coll. Interface Sci. A, 630: 23 (2023); doi:10.1016/j.jcis.2022.09.003
  37. S. Uzun, M. K. Han, C. J. Strobel, K. Hantanasirisakul, A. Goad, G. Dion, and Y. Gogotsi, Carbon, 174: 382 (2021); doi:10.1016/j.carbon.2020.12.021
  38. Q. W. Wang, H. B. Zhang, J. Liu, S. Zhao, X. Xie, L. X. Liu, R. Yang, N. Koratkar, and Z. Z. Yu, Adv. Funct. Mater., 29: 07 (2019); doi:10.1002/adfm.201806819
  39. J. Li, Y. X. Li, L. Y. Yang, and S. G. Yin, Adv. Mater. Interfaces, 9: 10 (2022); doi:10.1002/admi.202102266
  40. L. X. Liu, W. Chen, H. B. Zhang, Q. W. Wang, F. L. Guan, and Z. Z. Yu, Adv. Funct. Mater., 29: 44 (2019); doi:10.1002/adfm.201905197
  41. D. B. Zhang, R. Yin, Y. J. Zheng, Q. M. Li, H. Liu, C. T. Liu, and C. Y. Shen, Chem. Eng. J., 12: 42 (2022); https://doi.org/10.1021/acsami.0c15134
  42. L. X. Liu, W. Chen, H. B. Zhang, Y. Zhang, P. P. Tang, D. Y. Li, Z. M. Deng, L. X, and Z. Z. Yu, Chem. Eng. J., 430: 02 (2022); doi:10.1016/j.cej.2021.133074
  43. L. X. Liu, W. Chen, H. B. Zhang, L. X. Ye, Z. G. Wang, Y. Zhang, P. Min, and Z. Z. Yu, Nano-Micro Lett., 14: 01 (2022); doi:10.1007/s40820-022-00853-1
  44. T. Z. Zhou, Y. Yu, B. He, Z. Wang, T. Xiong, Z. X. Wang, Y. T. Liu, J. W. Xin, M. Qi, H. Zhang, X. Zhou, L. Gao, Q. Cheng, and L. Wei, Nat. Commun., 13: 01 (2022); doi:10.1038/s41467-022-32361-6
  45. J. H. Xiong, H. W. Zheng, R. J. Ding, P. Y. Li, Z. L. Liu, X. Zhao, F. H. Xue, Z. Chen, Q. Yan, Q. Y. Peng, and X. He, Mater. Des., 223: 111207 (2022); https://doi.org/10.1016/j.matdes.2022.111207
  46. X. H. Zheng, J. H. Tang, P. Wang, Z. Wang, L. Zou, and C. Li, J. Coll. Interface Sci., 628: 994 (2922); doi:10.2139/ssrn.4136044
  47. N. F. Mott, Proc. R. Soc. A, 153: 699 (1936); https://doi.org/10.1098/rspa.1936.0031
  48. N. Laman and D. Grischkowsky, Appl. Phys. Lett., 93: 05 (2008); doi:10.1063/1.2968308
  49. J. L. Wang, C. H. Lu, and K. Zhang, Energy Environ. Mater., 03: 01 (2020); doi:10.1002/eem2.12041
  50. D. Pani, A. Achilli, and A. Bonfiglio, Adv. Mater. Technol., 03: 10 (2018); doi:10.1002/admt.201800008
  51. Z. N. Wang, H. X. Wang, S. Ji, H. Wang, D. J. L. Brett, and R. F. Wang, J. Alloy. Comp., 814: 151789 (2020); doi:10.1016/J.JALLCOM.2019.151789
  52. A. Ehrmann and T. Blachowicz, AIMS Mater. Sci. B, 06: 02 (2019); doi:10.3934/matersci.2019.2.234
  53. S. Hu, D. Wang, A. P. Periyasamy, D. Kremenakova, J. Militky, and M. Tunak, Polymers, 13: 23 (2021); doi:10.3390/polym13234176
  54. T. Blachowicz, D. Wojcik, M. Surma, M. Magnuski, G. Ehrmann, and A. Ehrmann, Fibers, 11: 29 (2023): doi:10.3390/fib11030029
  55. S. Hu, D. Wang, Y. Kyosev, D. Kremenakova, and J. Militky, Polym. Test., 114: 107706 (2022); doi:10.1016/j.polymertesting.2022.107706
  56. S. W. Hong, S. S. Yoo, J. Y. Lee, and P. J. Yoo, J. Mater. Chem. C, 8: 40 (2020); doi:10.1039/D0TC02483J
  57. J. Lee, Y. Liu, Y. Liu, S.-J. Park, M. Park, and H. Y. Kim, J. Mater. Chem. C, 5: 31 (2017); doi:10.1039/C7TC02074K
  58. J. Y. Zong, X. J. Zhou, Y. F. Hu, T. B. Yang, D. X. Yan, H. Lin, J. Lei, and Z. M. Li, Comp. B: Eng., 225: 109299 (2021); doi:10.1016/j.compositesb.2021.109299
  59. L. C. Jia, G. Q. Zhang, L. Xu, W. J. Sun, G. J. Zhong, J. Lei, D. X. Yan, and Z. M. Li, ACS Appl. Mater. Interfaces, 11: 1 (2019); doi:10.1021/acsami.8b18459
  60. B. Moazzenchi and M. Montazer, Colloids Surf. A: Physicochem. Eng. Asp., 571: 110 (2019); doi:10.1016/j.colsurfa.2019.03.065
  61. J. C. Liu, S. Lin, K. Huang, C. Jia, Q. M. Wang, Z. W. Li, J. N. Song, Z. L. Liu, H. Y. Wang, and M. Lei, NPJ Flex. Electron., 4: 10 (2020); doi:10.1038/s41528-020-0074-0
  62. L. C. Jia, K. Q. Ding, R. J. Ma, H. L. Wang, W. J. Sun, D. X. Yan, B. Li, and Z. M. Li, Adv. Mater. Technol., 04: 1800503 (2019); doi:10.1002/admt.201800503
  63. S. Akram, A. Javid, and M. Ashraf, Mater. Sci. Eng. B, 288: 116159 (2023); doi:10.1016/j.mseb.2022.116159
  64. T. Daeneke, K. Khoshmanesh, N. Mahmood, I. A. de Castro, D. Esrafilzadeh, S. J. Barrow, M. D. Dickey, and K. Kalantar-zadeh, Chem. Soc. Rev., 47: 4073 (2018); doi:10.1039/C7CS00043J
  65. Li-Chuan Jia, Xian-Xiang Jia, Wen-Jin Sun, Yun-Peng Zhang, Ling Xu, Ding-Xiang Yan, Hai-Jun Su, and Zhong-Ming Li, ACS Appl. Mater. Interfaces, 12: 47 (2020); doi:10.1021/acsami.0c14397
  66. G. Ehrmann and A. Ehrmann, Encyclopedia, 01: 01 (2021); doi:10.3390/encyclopedia1010013
  67. O. Atalay, F. Kalaoglu, and S. K. Bahadir, J. Eng. Fibers Fabr., 14: 01 (2019); doi:10.1177/1558925019856603
  68. A. B. Nigusse, D. A. Mengistie, B. Malengier, G. B. Tseghai, and L. Van Langenhove, Sensors, 21: 12 (2021); doi:10.3390/s21124174
  69. T. Blachowicz and G. Ehrmann, Sensors, 21: 18 (2021); doi:10.3390/s21186042
  70. A. A. Simegnaw, B. Malengier, M. G. Tadesse, and L. van Langenhove, Materials, 15: 8 (2022); doi:10.3390/ma15082892
  71. S. J. He, Z. Liu, and H. Y. Wang, Text. Res. J., 93: 03 (2022); doi:10.1177/0040517522112257
  72. V. Rubeziene, A. Abraitiene, J. B. Guzaitiene, S. V. Zuravliova, A. Sankauskaite, Z. Kancleris, P. Ragulis, and G. Slekas, J. Text. Inst., 109: 03 (2018); doi:10.1080/00405000.2017.1347229
  73. E. Mikinka and M. Siwak, Mater. Today Commun., 32: 2 (2022); doi:10.1016/j.mtcomm.2022.104039
  74. K. K. Gupta, S. M. Abbas, and A. C. Abhyankar, J. Text. Inst., 113: 1862 (2022); doi:10.1080/00405000.2021.1954427
  75. J. Krishnasamy, A. Ramasamy, A. Das, and A. Basu, J. Thermoplast. Comp. Mater., 32: 03 (2018); doi:10.1177/0892705718759389
  76. Y. Gao, C. Xie, and Z. J. Zheng, Adv. Energy Mater., 11: 03 (2021); doi:10.1002/aenm.202002838
  77. M. S. Sadi, J. J. Pan, A. C. Xu, D. S. Cheng, G. M. Cai, and X. Wang, Cellulose, 26: 05 (2019); doi:10.1007/s10570-019-02628-1
  78. A. Lund, N. M. vander Velden, N. K. Persson, M. M. Hamedi, C. Muller, Mater. Sci. Eng. R: Rep., 126: 1 (2018); doi:10.1016/j.mser.2018.03.001
  79. S. Muller, D. Wieschollek, I. J. Juhasz, E. S. Hellkamp, and A. Ehrmann, Optik, 198: 163243 (2019); doi:10.1016/j.ijleo.2019.163243
  80. C. Y. Wang, K. L. Xia, H. M. Wang, X. P. Liang, Z. Yin, and Y. Y. Zhang, Adv. Mater., 31: 1801072 (2019); doi:10.1002/adma.201801072
  81. A. Alaghmandfard, O. Sedighi, N. T. Rezaei, A. A. Abedini, A. M. Khachatourian, M. S. Toprak, and A. Seifalian, Mater. Sci. Eng. C, 120: 111756 (2021); doi:10.1016/j.msec.2020.111756
  82. S. K. Tiwari, S. Sahoo, N. Wang, and A. Huczko, J. Sci. Adv. Mater. Devices, 05: 01(2020); doi:10.1016/j.jsamd.2020.01.006
  83. B. M. Li, O. Yildiz, A. C. Mills, T. J. Flewwellin, P. D. Bradford, and J. S. Jur, Carbon, 168: 673 (2020); doi:10.1016/j.carbon.2020.06.057
  84. J. S. Hu, J. S. Yu, Y. Li, X. Q. Liao, X. W. Yan, and L. Li, Nanomaterials, 10: 04 (2020); https://doi.org/10.3390/nano10040664
  85. P. Schal, I. J. Juhasz, N. Grimmelsmann, and A. Ehrmann, J. Coat. Technol. Res., 15: 04 (2018); doi:10.1007/s11998-017-0024-5
  86. Y. C. Li, X. R. Huang, L. J. Zeng, R. F. Li, H. F. Tian, X. W. Fu, Y. Wang, and W. H. Zhong, J. Mater. Sci., 54: 12 (2019); doi:10.1007/s10853-018-3006-9
  87. Jie Li, Yan-Jun Tan, Yi-Fu Chen, Hong Wu, Shaoyun Guo, and Ming Wang, Appl. Surf. Sci., 466: 657 (2019); doi:10.1016/j.apsusc.2018.10.079
  88. C. T. Lan, M. Guo, C. L. Li, Y. P. Qiu, Y. Ma, and J. Q. Sun, ACS Appl. Mater. Interfaces, 12: 7477 (2020); doi:10.1021/acsami.9b21698
  89. S. Gupta, C. Chang, A. K. Anbalagan, C. H. Lee, and N. H. Tai, Compos. Sci. Technol., 188: 107994 (2020); doi:10.1016/j.compscitech.2020.107994
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement