Download the full
version of the article (in PDF format)
Roman BILIAK
Lviv Polytechnic National University, 12, Stepan Bandera Str., UA-79013 Lviv, Ukraine
The Impact of γ, Neutron, Ion, and Electron Irradiation on the Structure and Properties of Graphene
477–487 (2025)
PACS numbers: 61.80.Ed, 61.80.Fe, 61.80.Hg, 61.80.Jh, 61.82.Rx, 65.80.Ck, 81.05.ue
The development of nuclear energy and space industry imposes new requirements on materials and devices based on them. One such requirement is the resistance of materials to radioactive radiation. Therefore, the study of the impact of radiation on the structure and properties of graphene is a key stage in the research of this 'two-dimensional' material. This article examines the influence of γ-radiation, neutron, electron, and ion irradiation on graphene and devices based on it. All types of radiation induce defects in graphene proportionally to the intensity, exposure time, and particles' energy. Studies have shown that devices based on graphene remain functional during irradiation; and further heating and annealing can set off the effect of defects, restoring the characteristics to their initial values. This unique property demonstrates graphene ability to self-heal defects caused by irradiation.
KEY WORDS: graphene, γ-radiation, neutron irradiation, electron irradiation, ion irradiation, self-healing effect, nuclear fusion
DOI: https://doi.org/10.15407/nnn.23.02.0477
REFERENCES
- M. A. Al Faruque, M. Syduzzaman, J. Sarkar, K. Bilisik, and M. Naebe, Nanomaterials, 11, No. 9: 2414 (2021); https://doi.org/10.3390/nano11092414
- R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, 2D Nanoscale, 3: 20 (2011); https://doi.org/10.1039/C0NR00323A
- S. E. Taher, J. M. Ashraf, K. Liao, and R. K. Abu Al-Rub, Graphene and 2D Mater., 8: 161 (2023); https://doi.org/10.1007/s41127-023-00066-2
- A. Paddubskaya, K. Batrakov, A. Khrushchinsky, S. Kuten, A. Plyushch, A. Stepanov, G. Remnev, V. Shvetsov, M. Baah, Y. Svirko, and P. Kuzhir, Nanomaterials, 11, No. 1: 170 (2021); https://doi.org/10.3390/nano11010170
- E. Shinn, A. Hübler, D. Lyon, M. Grosse Perdekamp, A. Bezryadin, and A. Belkin, Complexity, 18, No. 3: 24 (2013); https://doi.org/10.1002/cplx.21427
- S. El-Ahmar, M. Szary, T. Ciuk, R. Prokopowicz, A. Dobrowolski, J. Jagiełło, and M. Ziemba, Applied Surface Science, 590, No. 24: 152992 (2022); http://dx.doi.org/10.1016/j.apsusc.2022.152992
- T. Scalia, L. Bonventre, and M. L. Terranova, Nanomaterials (Basel), 13, No. 4: 680 (2023); https://doi.org/10.3390/nano13040680
- E. V. Gorbar and S. G. Sharapov, Osnovy Fizyky Grafenu [Fundamentals of Graphene Physics] (Kyiv: Instytut Teoretychnoi Fizyky im. M. M. Bogoliubova–Kyivskyi Natsionalnyi Universytet imeni Tarasa Shevchenka: 2013) (in Ukrainian).
- Jamie H. Warner, Franziska Schäffel, Alicja Bachmatiuk, and Mark H. Rümmeli, Graphene: Fundamentals and Emergent Applications (Elsevier: 2013); https://doi.org/10.1016/C2011-0-05169-4
- Graphene Materials: Structure, Properties and Modifications (Eds. G. Z. Kyzas and A. C. Mitropoulos) (Rijeka, Croatia: InTech: 2017); http://dx.doi.org/10.5772/intechopen.65151
- Ivan Ďuran, Slavomír Entler, Ondřej Grover, Inessa Bolshakova, Karel Výborný, Martin Kočan, Tomáš Jirman, George Vayakis, Oleksandr Vasyliev, Maksym Radishevskyi, Zhenxing Wang, and Daniel Neumaier, Fusion Engineering and Design, 146, Pt. B: 2397 (2019); https://doi.org/10.1016/j.fusengdes.2019.03.20
- W. Biel, R. Albanese, R. Ambrosino, M. Ariola, M. van Berkel, I. Bolshakova, K. J. Brunner, R. Cavazzana, M. Cecconello, S. Conroy, A. Dinklage, I. Duran, R. Dux, T. Eade, S. Entler, G. Ericsson, E. Fable, D. Farina, L. Figini, C. Finotti, Th. Franke, L. Giacomelli, L. Giannone, W. Gonzalez, A. Hjalmarsson, M. Hron, F. Janky, A. Kallenbach, J. Kogoj, R. König, O. Kudlacek, R. Luís, A. Malaquias, O. Marchuk, G. Marchiori, M. Mattei, F. Maviglia, G. De Masi, D. Mazon, H. Meister, K. Meyer, D. Micheletti, S. Nowak, Ch. Piron, A. Pironti, N. Rispoli, V. Rohde, G. Sergienko, S. El Shawish, M. Siccinio, A. Silva, F. Da Silva, C. Sozzi, M. Tardocchi, M. Z. Tokar, W. Treutterer, and H. Zohm, Fusion Engineering and Design, 146, Pt. A: 465 (2019); https://doi.org/10.1016/j.fusengdes.2018.12.092
- K. Sowery, Applied Nanolayers' Graphene is Approaching Sun Synchronous Orbit. Electronic Specifier (Published Online April 7, 2022); https://www.electronicspecifier.com/industries/industrial/applied-nanolayers-graphene-is-approaching-sun-synchronous-orbit.
- Y. Zhang, J. Shi, C. Chen, N. Li, Zh. Xu, L. Liu, L. Zhao, J. Li, and M. Jing, Physica E: Low-Dimensional Systems and Nanostructures, 97, Iss. 3: 151 (2018); http://dx.doi.org/10.1016/j.physe.2017.11.007
- Y. Xu, J. Bi, K. Xi, and M. Liu, The Japan Society of Applied Physics, 12, No. 6: 061004 (2019); http://dx.doi.org/10.7567/1882-0786/ab1e98
- K. Xi, J. S. Bi, Y. Hu, B. Li, J. Liu, Y. N. Xu, and M. Liu, Applied Physics Letters, 113, No. 16: 164103 (2018); https://doi.org/10.1063/1.5050054
- Konstantinos Alexandrou, Amrita Masurkar, Hassan Edrees, James F. Wishart, Yufeng Hao, Nicholas Petrone, James Hone, and Ioannis Kymissis, Applied Physics Letters, 109: 153108 (2016); https://doi.org/10.1063/1.4963782
- I. A. Bolshakova, Ya. Ya. Kost, M. I. Radishevskyi, F. M. Shurygin, O. V. Vasyliev, Z. Wang, D. Neumaier, M. Otto, M. Bulavin, and S. Kulikov, Nanomaterials in Biomedical Application and Biosensors (NAP-2019). Springer Proceedings in Physics. Vol. 244 (Eds. A. Pogrebnjak, M. Pogorielov, and R. Viter) (Singapore: Springer: 2020), p. 199–209; https://doi.org/10.1007/978-981-15-3996-1_20
- J. Eapen, R. Krishna, T. D. Burchell, and K. L. Murty, Journal of Nuclear Materials, 2, No. 1: 43 (2013); http://dx.doi.org/10.1080/21663831.2013.841782
- Linjie Fan, Jinshun Bi, Kai Xi, Xueqin Yan, Yannan Xu, and Lanlong Ji, IEEE Sensors Journal, 21, No. 14: 16100 (2021); http://dx.doi.org/10.1109/JSEN.2021.3075691
- H. Vázquez, E. H. Ahlgren, O. Ochedowski, A. A. Leino, R. Mirzayev, R. Kozubek, H. Lebius, M. Karlusic, M. Jaksic, and A. V. Krasheninnikov, Carbon, 114: 511 (2017); http://dx.doi.org/10.1016/j.carbon.2016.12.015
- A. Kamarou, Radiation Effects and Damage Formation in Semiconductors due to High-Energy Ion Irradiation (Published Online Jan. 2006); https://nbn-resolving.org/urn:nbn:de:gbv:27-20070402-150459-6
- Mala Hirnycha Entsyklopediia [Concise Mining Encyclopaedia] (Eds. V. S. Biletskyi) (Donetsk, Ukraine: 2004), vol. 1, p. 640 (in Ukrainian).
- Y. Xu, K. Zhang, C. Brüsewitz, X. Wu, and H. C. Hofsass, AIP Advances, 3, No. 7: 072120 (2013); http://dx.doi.org/10.1063/1.4816715
- K. Yoon, A. Rahnamoun, J. L. Swett, V. Iberi, D. A. Cullen, I. V. Vlassiouk, A. Belianinov, S. Jesse, X. Sang, O. S. Ovchinnikova, A. J. Rondinone, R. R. Unocic, and A. C. T. van Duin, ACS Nano, 10, No. 9: 8376 (2016); http://dx.doi.org/10.1021/acsnano.6b03036
- S. Kim, O. Dyck, A. V. Ievlev, I. V. Vlassiouk, S. V. Kalinin, A. Belianinov, S. Jesse, and O. S. Ovchinnikova, Carbon, 138: 277 (2018); https://doi.org/10.1016/j.carbon.2018.06.017
- M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, Rodrigo B. Capaz, C. A. Achete, and A. Jorio, Carbon, 48, No. 5: 1592 (2010); http://dx.doi.org/10.1016/j.carbon.2009.12.057
- D. Teweldebrhan and A. A. Balandin, Applied Physics Letters, 94, No. 1: 013101 (2008); http://dx.doi.org/10.1063/1.3062851
- Isaac Childres, Luis A. Jauregui, Michael Foxe, Jifa Tian, Romaneh Jalilian, Igor Jovanovic, and Yong P. Chen, Applied Physics Letters, 97, No. 17: 173109 (2010); http://dx.doi.org/10.1063/1.3502610
- Yangbo Zhou, Jakub Jadwiszczak, Darragh Keane, Ying Chen, Dapeng Yud, and Hongzhou Zhang, Nanoscale, 25: 1 (2017); http://dx.doi.org/10.1039/C7NR03446F
- Md. Zahid Hossain, Sergey Rumyantsev, Michael S. Shur, and Alexander A. Balandin, Applied Physics Letters, 102: 153512 (2012); http://dx.doi.org/10.1063/1.4802759
|