Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 2

 



Download the full version of the article (in PDF format)

Roman BILIAK

Lviv Polytechnic National University, 12, Stepan Bandera Str., UA-79013 Lviv, Ukraine

The Impact of γ, Neutron, Ion, and Electron Irradiation on the Structure and Properties of Graphene

477–487 (2025)

PACS numbers: 61.80.Ed, 61.80.Fe, 61.80.Hg, 61.80.Jh, 61.82.Rx, 65.80.Ck, 81.05.ue

The development of nuclear energy and space industry imposes new requirements on materials and devices based on them. One such requirement is the resistance of materials to radioactive radiation. Therefore, the study of the impact of radiation on the structure and properties of graphene is a key stage in the research of this 'two-dimensional' material. This article examines the influence of γ-radiation, neutron, electron, and ion irradiation on graphene and devices based on it. All types of radiation induce defects in graphene proportionally to the intensity, exposure time, and particles' energy. Studies have shown that devices based on graphene remain functional during irradiation; and further heating and annealing can set off the effect of defects, restoring the characteristics to their initial values. This unique property demonstrates graphene ability to self-heal defects caused by irradiation.

KEY WORDS: graphene, γ-radiation, neutron irradiation, electron irradiation, ion irradiation, self-healing effect, nuclear fusion

DOI:  https://doi.org/10.15407/nnn.23.02.0477

REFERENCES
  1. M. A. Al Faruque, M. Syduzzaman, J. Sarkar, K. Bilisik, and M. Naebe, Nanomaterials, 11, No. 9: 2414 (2021); https://doi.org/10.3390/nano11092414
  2. R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, 2D Nanoscale, 3: 20 (2011); https://doi.org/10.1039/C0NR00323A
  3. S. E. Taher, J. M. Ashraf, K. Liao, and R. K. Abu Al-Rub, Graphene and 2D Mater., 8: 161 (2023); https://doi.org/10.1007/s41127-023-00066-2
  4. A. Paddubskaya, K. Batrakov, A. Khrushchinsky, S. Kuten, A. Plyushch, A. Stepanov, G. Remnev, V. Shvetsov, M. Baah, Y. Svirko, and P. Kuzhir, Nanomaterials, 11, No. 1: 170 (2021); https://doi.org/10.3390/nano11010170
  5. E. Shinn, A. Hübler, D. Lyon, M. Grosse Perdekamp, A. Bezryadin, and A. Belkin, Complexity, 18, No. 3: 24 (2013); https://doi.org/10.1002/cplx.21427
  6. S. El-Ahmar, M. Szary, T. Ciuk, R. Prokopowicz, A. Dobrowolski, J. Jagiełło, and M. Ziemba, Applied Surface Science, 590, No. 24: 152992 (2022); http://dx.doi.org/10.1016/j.apsusc.2022.152992
  7. T. Scalia, L. Bonventre, and M. L. Terranova, Nanomaterials (Basel), 13, No. 4: 680 (2023); https://doi.org/10.3390/nano13040680
  8. E. V. Gorbar and S. G. Sharapov, Osnovy Fizyky Grafenu [Fundamentals of Graphene Physics] (Kyiv: Instytut Teoretychnoi Fizyky im. M. M. Bogoliubova–Kyivskyi Natsionalnyi Universytet imeni Tarasa Shevchenka: 2013) (in Ukrainian).
  9. Jamie H. Warner, Franziska Schäffel, Alicja Bachmatiuk, and Mark H. Rümmeli, Graphene: Fundamentals and Emergent Applications (Elsevier: 2013); https://doi.org/10.1016/C2011-0-05169-4
  10. Graphene Materials: Structure, Properties and Modifications (Eds. G. Z. Kyzas and A. C. Mitropoulos) (Rijeka, Croatia: InTech: 2017); http://dx.doi.org/10.5772/intechopen.65151
  11. Ivan Ďuran, Slavomír Entler, Ondřej Grover, Inessa Bolshakova, Karel Výborný, Martin Kočan, Tomáš Jirman, George Vayakis, Oleksandr Vasyliev, Maksym Radishevskyi, Zhenxing Wang, and Daniel Neumaier, Fusion Engineering and Design, 146, Pt. B: 2397 (2019); https://doi.org/10.1016/j.fusengdes.2019.03.20
  12. W. Biel, R. Albanese, R. Ambrosino, M. Ariola, M. van Berkel, I. Bolshakova, K. J. Brunner, R. Cavazzana, M. Cecconello, S. Conroy, A. Dinklage, I. Duran, R. Dux, T. Eade, S. Entler, G. Ericsson, E. Fable, D. Farina, L. Figini, C. Finotti, Th. Franke, L. Giacomelli, L. Giannone, W. Gonzalez, A. Hjalmarsson, M. Hron, F. Janky, A. Kallenbach, J. Kogoj, R. König, O. Kudlacek, R. Luís, A. Malaquias, O. Marchuk, G. Marchiori, M. Mattei, F. Maviglia, G. De Masi, D. Mazon, H. Meister, K. Meyer, D. Micheletti, S. Nowak, Ch. Piron, A. Pironti, N. Rispoli, V. Rohde, G. Sergienko, S. El Shawish, M. Siccinio, A. Silva, F. Da Silva, C. Sozzi, M. Tardocchi, M. Z. Tokar, W. Treutterer, and H. Zohm, Fusion Engineering and Design, 146, Pt. A: 465 (2019); https://doi.org/10.1016/j.fusengdes.2018.12.092
  13. K. Sowery, Applied Nanolayers' Graphene is Approaching Sun Synchronous Orbit. Electronic Specifier (Published Online April 7, 2022); https://www.electronicspecifier.com/industries/industrial/applied-nanolayers-graphene-is-approaching-sun-synchronous-orbit.
  14. Y. Zhang, J. Shi, C. Chen, N. Li, Zh. Xu, L. Liu, L. Zhao, J. Li, and M. Jing, Physica E: Low-Dimensional Systems and Nanostructures, 97, Iss. 3: 151 (2018); http://dx.doi.org/10.1016/j.physe.2017.11.007
  15. Y. Xu, J. Bi, K. Xi, and M. Liu, The Japan Society of Applied Physics, 12, No. 6: 061004 (2019); http://dx.doi.org/10.7567/1882-0786/ab1e98
  16. K. Xi, J. S. Bi, Y. Hu, B. Li, J. Liu, Y. N. Xu, and M. Liu, Applied Physics Letters, 113, No. 16: 164103 (2018); https://doi.org/10.1063/1.5050054
  17. Konstantinos Alexandrou, Amrita Masurkar, Hassan Edrees, James F. Wishart, Yufeng Hao, Nicholas Petrone, James Hone, and Ioannis Kymissis, Applied Physics Letters, 109: 153108 (2016); https://doi.org/10.1063/1.4963782
  18. I. A. Bolshakova, Ya. Ya. Kost, M. I. Radishevskyi, F. M. Shurygin, O. V. Vasyliev, Z. Wang, D. Neumaier, M. Otto, M. Bulavin, and S. Kulikov, Nanomaterials in Biomedical Application and Biosensors (NAP-2019). Springer Proceedings in Physics. Vol. 244 (Eds. A. Pogrebnjak, M. Pogorielov, and R. Viter) (Singapore: Springer: 2020), p. 199–209; https://doi.org/10.1007/978-981-15-3996-1_20
  19. J. Eapen, R. Krishna, T. D. Burchell, and K. L. Murty, Journal of Nuclear Materials, 2, No. 1: 43 (2013); http://dx.doi.org/10.1080/21663831.2013.841782
  20. Linjie Fan, Jinshun Bi, Kai Xi, Xueqin Yan, Yannan Xu, and Lanlong Ji, IEEE Sensors Journal, 21, No. 14: 16100 (2021); http://dx.doi.org/10.1109/JSEN.2021.3075691
  21. H. Vázquez, E. H. Ahlgren, O. Ochedowski, A. A. Leino, R. Mirzayev, R. Kozubek, H. Lebius, M. Karlusic, M. Jaksic, and A. V. Krasheninnikov, Carbon, 114: 511 (2017); http://dx.doi.org/10.1016/j.carbon.2016.12.015
  22. A. Kamarou, Radiation Effects and Damage Formation in Semiconductors due to High-Energy Ion Irradiation (Published Online Jan. 2006); https://nbn-resolving.org/urn:nbn:de:gbv:27-20070402-150459-6
  23. Mala Hirnycha Entsyklopediia [Concise Mining Encyclopaedia] (Eds. V. S. Biletskyi) (Donetsk, Ukraine: 2004), vol. 1, p. 640 (in Ukrainian).
  24. Y. Xu, K. Zhang, C. Brüsewitz, X. Wu, and H. C. Hofsass, AIP Advances, 3, No. 7: 072120 (2013); http://dx.doi.org/10.1063/1.4816715
  25. K. Yoon, A. Rahnamoun, J. L. Swett, V. Iberi, D. A. Cullen, I. V. Vlassiouk, A. Belianinov, S. Jesse, X. Sang, O. S. Ovchinnikova, A. J. Rondinone, R. R. Unocic, and A. C. T. van Duin, ACS Nano, 10, No. 9: 8376 (2016); http://dx.doi.org/10.1021/acsnano.6b03036
  26. S. Kim, O. Dyck, A. V. Ievlev, I. V. Vlassiouk, S. V. Kalinin, A. Belianinov, S. Jesse, and O. S. Ovchinnikova, Carbon, 138: 277 (2018); https://doi.org/10.1016/j.carbon.2018.06.017
  27. M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, Rodrigo B. Capaz, C. A. Achete, and A. Jorio, Carbon, 48, No. 5: 1592 (2010); http://dx.doi.org/10.1016/j.carbon.2009.12.057
  28. D. Teweldebrhan and A. A. Balandin, Applied Physics Letters, 94, No. 1: 013101 (2008); http://dx.doi.org/10.1063/1.3062851
  29. Isaac Childres, Luis A. Jauregui, Michael Foxe, Jifa Tian, Romaneh Jalilian, Igor Jovanovic, and Yong P. Chen, Applied Physics Letters, 97, No. 17: 173109 (2010); http://dx.doi.org/10.1063/1.3502610
  30. Yangbo Zhou, Jakub Jadwiszczak, Darragh Keane, Ying Chen, Dapeng Yud, and Hongzhou Zhang, Nanoscale, 25: 1 (2017); http://dx.doi.org/10.1039/C7NR03446F
  31. Md. Zahid Hossain, Sergey Rumyantsev, Michael S. Shur, and Alexander A. Balandin, Applied Physics Letters, 102: 153512 (2012); http://dx.doi.org/10.1063/1.4802759
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement