Go to journal homepage

Issues

 / 

2025

 / 

vol. 23 / 

issue 2

 



Download the full version of the article (in PDF format)

Fatemeh MOLLAAMIN

Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey

Smart Nanocomposites of ZnO & ZnS as Potent Semiconductors Through Hydrogen-Bonded Engineering in Transistors

449–465 (2025)

PACS numbers: 61.46.Bc, 68.43.Bc, 71.15.Mb, 73.20.Hb, 73.22.Lp, 81.07.Nb, 85.30.De

We employ first-principles calculations to investigate the structural stability and electronic properties of cubic zinc oxide (ZnO) and zinc sulphide (ZnS) heteroclusters adsorbed with H2O molecule. A comprehensive investigation on H2O grabbing by ZnO/ZnS heteroclusters is carried out using DFT computations at the CAM–B3LYP–D3/6–311G(d, p) level of theory. The notable fragile signal intensity close to the parallel edge of the nanocluster sample might be owing to H/OH-binding-induced non-spherical distribution of ZnO or ZnS heterocluster. The hypothesis of the energy absorption phenomenon is confirmed by density distributions of CDD, TDOS/PDOS/OPDOS, and LOL for ZnO/ZnO–H2O or ZnS/ZnS–H2O. A vaster jointed area is engaged by an isosurface map for H/OH adsorption on ZnO or ZnS surface towards formation of ZnO–H2O or ZnS–H2O complex due to labelling atoms of O1, Zn15, O27 or S27, H29, H30. Therefore, it can be considered that zinc in the functionalized ZnO or ZnS might have more impressive sensitivity for accepting the electrons in the process of H/OH adsorption. It is considerable that, when all surface atoms of ZnO or ZnS are coated by OH and H groups, the semiconducting behaviour is recovered. Our results open up the possibility of tailoring the electronic properties by controlling the surface adsorption sites.

KEY WORDS: cubic ZnO/ZnS heteroclusters, semiconductor, H/OH adsorption, first-principles calculations

DOI:  https://doi.org/10.15407/nnn.23.02.0449

REFERENCES
  1. Christopher J. Frederickson, Jae-Young Koh, and Ashley I. Bush, Nat. Rev. Neurosci., 6: 449 (2005); https://doi.org/10.1038/nrn1671
  2. Amir Moezzi, Andrew M. McDonagh, and Michael B. Cortie, Chem. Eng. J., 185–186: 1–22 (2012); https://doi.org/10.1016/j.cej.2012.01.076
  3. Jingbin Han, Fengru Fan, Chen Xu, Shisheng Lin, Min Wei, Xue Duan, and Zhong Lin Wang, Nanotechnology, 21, No. 40: 405203 (2010); https://doi.org/10.1088/0957-4484/21/40/405203
  4. Zenan Jiang, Saeid Soltanian, Bobak Gholamkhass, Abdullah Aljaafari, and Peyman Servati, RSC Adv., 8, Iss. 64: 36542 (2018); https://doi.org/10.1039/C8RA07071G
  5. J. Čížek, J. Valenta, P. Hruška, O. Melikhova, I. Procházka, M. Novotný, and J. Bulíř, Appl. Phys. Lett., 106: 251902 (2015); https://doi.org/10.1063/1.4922944
  6. Kiyoshi Matsuyama, Kenji Mishima, Takafumi Kato, Keiichi Irie, and Kenichi Mishima, J. Colloid Interface Sci., 367: 171 (2012); https://doi.org/10.1016/j.jcis.2011.10.003
  7. Buguo Wang, Bruce Claflin, Michael Callahan, Z. -Q. Fang, and David Look, Proc. SPIE, 8987: 89871D (2014); https://doi.org/10.1117/12.2042344
  8. B. J. Jin, S. Im, and S. Y. Lee, Thin Solid Films, 366: 107 (2000); https://doi.org/10.1016/S0040-6090(00)00746-X
  9. C. V. Manzano, D. Alegre, O. Caballero-Calero, B. Alén, and M. S. Martín-González, J. Appl. Phys., 110: 043538 (2011); https://doi.org/10.1063/1.3622627
  10. M. A. Borysiewicz, M. Wzorek, T. Wojciechowski, T. Wojtowicz, E. Kamińska, and A. Piotrowska, J. Lumin., 147: 367 (2014); https://doi.org/10.1016/j.jlumin.2013.11.076
  11. Oscar Marin, Vanessa González, Mónica Tirado, and David Comedi, Mater. Lett., 251: 41 (2019); https://doi.org/10.1016/j.matlet.2019.05.033
  12. Huan-Ming Xiong, Da-Peng Liu, Yong-Yao Xia, and Jie-Sheng Chen, Chem. Mater., 17: 3062 (2005); https://doi.org/10.1021/cm050556r
  13. D. C. Agarwal, U. B. Singh, Srashti Gupta, Rahul Singhal, P. K. Kulriya, Fouran Singh, A. Tripathi, Jitendra Singh, U. S. Joshi, and D. K. Avasthi, Scientific Reports, 9: 6675 (2019); https://doi.org/10.1038/s41598-019-43184-9
  14. E. Wolska, J. Kaszewski, P. Kiełbik, J. Grzyb, M. M. Godlewski, and M. Godlewski, Opt. Mater., 36: 1655 (2014); https://doi.org/10.1016/j.optmat.2013.12.032
  15. J.-H. Lim, C.-K. Kang, K.-K. Kim, I.-K. Park, D.-K. Hwang, and S.-J. Park, Adv. Mater., 18: 2720 (2006); https://doi.org/10.1002/adma.200502633
  16. Diana B. Tolubayeva, Lesya V. Gritsenko, Yevgeniya Y. Kedruk, Madi B. Aitzhanov, Renata R. Nemkayeva, and Khabibulla A. Abdullin, Biosensors, 13: 793 (2023); https://doi.org/10.3390/bios13080793
  17. Haijie Liu, Yan Zhang, Haihua Zhang, Longcai Wang, Tao Wang, Zhifa Han, Liyong Wu, and Guiyou Liu, J. Transl. Med., 19: 221 (2021); https://doi.org/10.1186/s12967-021-02892-5
  18. Kh. A. Abdullin, M. T. Gabdullin, L. V. Gritsenko, D. V. Ismailov, Zh. K. Kalkozova, S. E. Kumekov, Zh. O. Mukash, A. Yu. Sazonov, and E. I. Terukov, Semiconductors, 50: 1010 (2016); https://doi.org/10.1134/S1063782616080029
  19. Shang-Chou Chang, Jhih-Ciang Hu, Huang-Tian Chan, and Chuan-An Hsiao, Coatings, 12: 945 (2022); https://doi.org/10.3390/coatings12070945
  20. Shang-Chou Chang, Tsung-Han Li, and Huang-Tian Chan, Int. J. Electrochem. Sci., 16: 210817 (2021); https://doi.org/10.20964/2021.08.34
  21. Cong Zhang, Zongsheng Cao, Guangliang Zhang, Yu Yan, Xin Yang, Jiayuan Chang, Yanfei Song, Yuhang Jia, Peng Pan, Wei Mi, Zhengchun Yang, Jinshi Zhao, and Jun Wei, Microchem. J., 158: 105237 (2020); https://doi.org/10.1016/j.microc.2020.105237
  22. Srijita Nundy, Aritra Ghosh, and Tapas K. Mallick, ACS Omega, 5, No. 2: 1033 (2020); https://doi.org/10.1021/acsomega.9b02758
  23. David Raymand, Adri C. T. van Duin, Daniel Spångberg, William A. Goddard III, and Kersti Hermansson, Surface Science, 604, Nos. 9–10: 741 (2010); https://doi.org/10.1016/j.susc.2009.12.012
  24. Gang Wang, Baibiao Huang, Zhujie Li, Zaizhu Lou, Zeyan Wang, Ying Dai, and Myung-Hwan Whangbo, Scientific Reports, 5: 8544 (2015); https://doi.org/10.1038/srep08544
  25. Afaq Ullah Khan, Kamran Tahir, Karma Albalawi, Mona Y. Khalil, Zainab M. Almarhoon, Magdi E. A. Zaki, Salman Latif, Hassan M. A. Hassan, Moamen S. Refat, and Alaa M. Munshi, Materials Chemistry and Physics, 291: 126667 (2022); https://doi.org/10.1016/j.matchemphys.2022.126667
  26. Dejan Zagorac, Jelena Zagorac, Milan Pejić, Branko Matović, and Johann Christian Schön, Nanomaterials, 12: 1595 (2022); https://doi.org/10.3390/nano12091595
  27. Nicolas Perciani de Moraes, Lucca Gabriel Penida Marins, Marcelo Yuji de Moura Yamanaka, Rebeca Bacani, Robson da Silva Rocha, and Liana Alvares Rodrigues, J. Photochem. Photobiol. A Chem., 418: 113377 (2021); https://doi.org/10.1016/j.jphotochem.2021.113377
  28. Asset Bolatov, Alida Manjovelo, Bilel Chouchene, Lavinia Balan, Thomas Gries, Ghouti Medjahdi, Bolat Uralbekov, and Raphaël Schneider, Materials, 17: 4877 (2024); https://doi.org/10.3390/ma17194877
  29. Zhifang Dong, Yan Wu, Natarajan Thirugnanam, and Gonglin Li, Appl. Surf. Sci., 430: 293 (2018); https://doi.org/10.1016/j.apsusc.2017.07.186
  30. P. E. Blöchl, Phys. Rev. B, 50: 17953 (1994); https://doi.org/10.1103/PhysRevB.50.17953
  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865
  32. Paul Ziesche, Stefan Kurth, and John P. Perdew, Comput. Mater. Sci., 11: 122 (1998); https://doi.org/10.1016/S0927-0256(97)00206-1
  33. Marco Arrigoni and Georg K. H. Madsen, Comput. Mater. Sci., 156: 354 (2019); https://doi.org/10.1016/j.commatsci.2018.10.005
  34. P. Hohenberg and W. Kohn, Phys. Rev. B, 136: B864 (1964); https://doi.org/10.1103/PhysRev.136.B864
  35. W. Kohn and L. J. Sham, Phys. Rev., 140: A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
  36. Axel D. Becke, J. Chem. Phys., 98: 5648 (1993); https://doi.org/10.1063/1.464913
  37. Chengteh Lee, Weitao Yang, and Robert G. Parr, Phys Rev B, 37: 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
  38. K. Kim and K. D. Jordan, J. Phys. Chem., 98, No. 40: 10089 (1994); https://doi.org/10.1021/j100091a024
  39. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, No. 45: 11623 (1994); https://doi.org/10.1021/j100096a001
  40. C. J. Cramer, Essentials of Computational Chemistry: Theories and Models (Wiley: 2004).
  41. Fatemeh Mollaamin and Majid Monajjemi, Int. J. Quantum Chem., 124: e27348 (2024); https://doi.org/10.1002/qua.27348
  42. Fatemeh Mollaamin and Majid Monajjemi, Molecular Simulation, 49, 4: 365 (2023); https://doi.org/10.1080/08927022.2022.2159996
  43. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58, No. 8: 1200 (1980); https://doi.org/10.1139/p80-159
  44. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., Gaussian 16, Revision C.01 (Wallingford CT: Gaussian, Inc.: 2016).
  45. R. Dennington, T. A. Keith, and J. M. Millam, GaussView 6.0.16 (Semichem Inc.: 2016).
  46. Zihan Xu, Chenglong Qin, Yushu Yu, Gang Jiang, and Liang Zhao, AIP Advances, 14: 055114 (2024); https://doi.org/10.1063/5.0208082
  47. A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 9: 5397 (1990); https://doi.org/10.1063/1.458517
  48. H. L. Schmider and A. D. Becke, Journal of Molecular Structure: THEOCHEM., 527, Nos. 1–3: 51 (2000); https://doi.org/10.1016/S0166-1280(00)00477-2
  49. A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 9: 5397 (1990); https://doi.org/10.1063/1.458517
  50. V. Tsirelson and A. Stash, Acta Cryst., B58: 780 (2002); https://doi.org/10.1107/S0108768102012338
  51. I. Mayer, Chemical Physics Letters, 544: 83 (2012); https://doi.org/10.1016/j.cplett.2012.07.003
  52. F. Mollaamin, M. T. Baei, M. Monajjemi, R. Zhiani, and B. Honarparvar, Russ. J. Phys. Chem., 82, 2354 (2008); https://doi.org/10.1134/S0036024408130323
  53. Tian Lu and Feiwu Chen, J. Phys. Chem. A, 117: No. 14: 3100 (2013); https://doi.org/10.1021/jp4010345
  54. Xiyi Wang, Xuefeng Zhang, Witold Pedrycz, Shuang-Hua Yang, and Driss Boutat, Fractal Fract., 8: 523 (2024); https://doi.org/10.3390/fractalfract8090523
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement