Download the full
version of the article (in PDF format)
Fatemeh MOLLAAMIN
Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
Smart Nanocomposites of ZnO & ZnS as Potent Semiconductors Through Hydrogen-Bonded Engineering in Transistors
449–465 (2025)
PACS numbers: 61.46.Bc, 68.43.Bc, 71.15.Mb, 73.20.Hb, 73.22.Lp, 81.07.Nb, 85.30.De
We employ first-principles calculations to investigate the structural stability and electronic properties of cubic zinc oxide (ZnO) and zinc sulphide (ZnS) heteroclusters adsorbed with H2O molecule. A comprehensive investigation on H2O grabbing by ZnO/ZnS heteroclusters is carried out using DFT computations at the CAM–B3LYP–D3/6–311G(d, p) level of theory. The notable fragile signal intensity close to the parallel edge of the nanocluster sample might be owing to H/OH-binding-induced non-spherical distribution of ZnO or ZnS heterocluster. The hypothesis of the energy absorption phenomenon is confirmed by density distributions of CDD, TDOS/PDOS/OPDOS, and LOL for ZnO/ZnO–H2O or ZnS/ZnS–H2O. A vaster jointed area is engaged by an isosurface map for H/OH adsorption on ZnO or ZnS surface towards formation of ZnO–H2O or ZnS–H2O complex due to labelling atoms of O1, Zn15, O27 or S27, H29, H30. Therefore, it can be considered that zinc in the functionalized ZnO or ZnS might have more impressive sensitivity for accepting the electrons in the process of H/OH adsorption. It is considerable that, when all surface atoms of ZnO or ZnS are coated by OH and H groups, the semiconducting behaviour is recovered. Our results open up the possibility of tailoring the electronic properties by controlling the surface adsorption sites.
KEY WORDS: cubic ZnO/ZnS heteroclusters, semiconductor, H/OH adsorption, first-principles calculations
DOI: https://doi.org/10.15407/nnn.23.02.0449
REFERENCES
- Christopher J. Frederickson, Jae-Young Koh, and Ashley I. Bush, Nat. Rev. Neurosci., 6: 449 (2005); https://doi.org/10.1038/nrn1671
- Amir Moezzi, Andrew M. McDonagh, and Michael B. Cortie, Chem. Eng. J., 185–186: 1–22 (2012); https://doi.org/10.1016/j.cej.2012.01.076
- Jingbin Han, Fengru Fan, Chen Xu, Shisheng Lin, Min Wei, Xue Duan, and Zhong Lin Wang, Nanotechnology, 21, No. 40: 405203 (2010); https://doi.org/10.1088/0957-4484/21/40/405203
- Zenan Jiang, Saeid Soltanian, Bobak Gholamkhass, Abdullah Aljaafari, and Peyman Servati, RSC Adv., 8, Iss. 64: 36542 (2018); https://doi.org/10.1039/C8RA07071G
- J. Čížek, J. Valenta, P. Hruška, O. Melikhova, I. Procházka, M. Novotný, and J. Bulíř, Appl. Phys. Lett., 106: 251902 (2015); https://doi.org/10.1063/1.4922944
- Kiyoshi Matsuyama, Kenji Mishima, Takafumi Kato, Keiichi Irie, and Kenichi Mishima, J. Colloid Interface Sci., 367: 171 (2012); https://doi.org/10.1016/j.jcis.2011.10.003
- Buguo Wang, Bruce Claflin, Michael Callahan, Z. -Q. Fang, and David Look, Proc. SPIE, 8987: 89871D (2014); https://doi.org/10.1117/12.2042344
- B. J. Jin, S. Im, and S. Y. Lee, Thin Solid Films, 366: 107 (2000); https://doi.org/10.1016/S0040-6090(00)00746-X
- C. V. Manzano, D. Alegre, O. Caballero-Calero, B. Alén, and M. S. Martín-González, J. Appl. Phys., 110: 043538 (2011); https://doi.org/10.1063/1.3622627
- M. A. Borysiewicz, M. Wzorek, T. Wojciechowski, T. Wojtowicz, E. Kamińska, and A. Piotrowska, J. Lumin., 147: 367 (2014); https://doi.org/10.1016/j.jlumin.2013.11.076
- Oscar Marin, Vanessa González, Mónica Tirado, and David Comedi, Mater. Lett., 251: 41 (2019); https://doi.org/10.1016/j.matlet.2019.05.033
- Huan-Ming Xiong, Da-Peng Liu, Yong-Yao Xia, and Jie-Sheng Chen, Chem. Mater., 17: 3062 (2005); https://doi.org/10.1021/cm050556r
- D. C. Agarwal, U. B. Singh, Srashti Gupta, Rahul Singhal, P. K. Kulriya, Fouran Singh, A. Tripathi, Jitendra Singh, U. S. Joshi, and D. K. Avasthi, Scientific Reports, 9: 6675 (2019); https://doi.org/10.1038/s41598-019-43184-9
- E. Wolska, J. Kaszewski, P. Kiełbik, J. Grzyb, M. M. Godlewski, and M. Godlewski, Opt. Mater., 36: 1655 (2014); https://doi.org/10.1016/j.optmat.2013.12.032
- J.-H. Lim, C.-K. Kang, K.-K. Kim, I.-K. Park, D.-K. Hwang, and S.-J. Park, Adv. Mater., 18: 2720 (2006); https://doi.org/10.1002/adma.200502633
- Diana B. Tolubayeva, Lesya V. Gritsenko, Yevgeniya Y. Kedruk, Madi B. Aitzhanov, Renata R. Nemkayeva, and Khabibulla A. Abdullin, Biosensors, 13: 793 (2023); https://doi.org/10.3390/bios13080793
- Haijie Liu, Yan Zhang, Haihua Zhang, Longcai Wang, Tao Wang, Zhifa Han, Liyong Wu, and Guiyou Liu, J. Transl. Med., 19: 221 (2021); https://doi.org/10.1186/s12967-021-02892-5
- Kh. A. Abdullin, M. T. Gabdullin, L. V. Gritsenko, D. V. Ismailov, Zh. K. Kalkozova, S. E. Kumekov, Zh. O. Mukash, A. Yu. Sazonov, and E. I. Terukov, Semiconductors, 50: 1010 (2016); https://doi.org/10.1134/S1063782616080029
- Shang-Chou Chang, Jhih-Ciang Hu, Huang-Tian Chan, and Chuan-An Hsiao, Coatings, 12: 945 (2022); https://doi.org/10.3390/coatings12070945
- Shang-Chou Chang, Tsung-Han Li, and Huang-Tian Chan, Int. J. Electrochem. Sci., 16: 210817 (2021); https://doi.org/10.20964/2021.08.34
- Cong Zhang, Zongsheng Cao, Guangliang Zhang, Yu Yan, Xin Yang, Jiayuan Chang, Yanfei Song, Yuhang Jia, Peng Pan, Wei Mi, Zhengchun Yang, Jinshi Zhao, and Jun Wei, Microchem. J., 158: 105237 (2020); https://doi.org/10.1016/j.microc.2020.105237
- Srijita Nundy, Aritra Ghosh, and Tapas K. Mallick, ACS Omega, 5, No. 2: 1033 (2020); https://doi.org/10.1021/acsomega.9b02758
- David Raymand, Adri C. T. van Duin, Daniel Spångberg, William A. Goddard III, and Kersti Hermansson, Surface Science, 604, Nos. 9–10: 741 (2010); https://doi.org/10.1016/j.susc.2009.12.012
- Gang Wang, Baibiao Huang, Zhujie Li, Zaizhu Lou, Zeyan Wang, Ying Dai, and Myung-Hwan Whangbo, Scientific Reports, 5: 8544 (2015); https://doi.org/10.1038/srep08544
- Afaq Ullah Khan, Kamran Tahir, Karma Albalawi, Mona Y. Khalil, Zainab M. Almarhoon, Magdi E. A. Zaki, Salman Latif, Hassan M. A. Hassan, Moamen S. Refat, and Alaa M. Munshi, Materials Chemistry and Physics, 291: 126667 (2022); https://doi.org/10.1016/j.matchemphys.2022.126667
- Dejan Zagorac, Jelena Zagorac, Milan Pejić, Branko Matović, and Johann Christian Schön, Nanomaterials, 12: 1595 (2022); https://doi.org/10.3390/nano12091595
- Nicolas Perciani de Moraes, Lucca Gabriel Penida Marins, Marcelo Yuji de Moura Yamanaka, Rebeca Bacani, Robson da Silva Rocha, and Liana Alvares Rodrigues, J. Photochem. Photobiol. A Chem., 418: 113377 (2021); https://doi.org/10.1016/j.jphotochem.2021.113377
- Asset Bolatov, Alida Manjovelo, Bilel Chouchene, Lavinia Balan, Thomas Gries, Ghouti Medjahdi, Bolat Uralbekov, and Raphaël Schneider, Materials, 17: 4877 (2024); https://doi.org/10.3390/ma17194877
- Zhifang Dong, Yan Wu, Natarajan Thirugnanam, and Gonglin Li, Appl. Surf. Sci., 430: 293 (2018); https://doi.org/10.1016/j.apsusc.2017.07.186
- P. E. Blöchl, Phys. Rev. B, 50: 17953 (1994); https://doi.org/10.1103/PhysRevB.50.17953
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865
- Paul Ziesche, Stefan Kurth, and John P. Perdew, Comput. Mater. Sci., 11: 122 (1998); https://doi.org/10.1016/S0927-0256(97)00206-1
- Marco Arrigoni and Georg K. H. Madsen, Comput. Mater. Sci., 156: 354 (2019); https://doi.org/10.1016/j.commatsci.2018.10.005
- P. Hohenberg and W. Kohn, Phys. Rev. B, 136: B864 (1964); https://doi.org/10.1103/PhysRev.136.B864
- W. Kohn and L. J. Sham, Phys. Rev., 140: A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
- Axel D. Becke, J. Chem. Phys., 98: 5648 (1993); https://doi.org/10.1063/1.464913
- Chengteh Lee, Weitao Yang, and Robert G. Parr, Phys Rev B, 37: 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- K. Kim and K. D. Jordan, J. Phys. Chem., 98, No. 40: 10089 (1994); https://doi.org/10.1021/j100091a024
- P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, No. 45: 11623 (1994); https://doi.org/10.1021/j100096a001
- C. J. Cramer, Essentials of Computational Chemistry: Theories and Models (Wiley: 2004).
- Fatemeh Mollaamin and Majid Monajjemi, Int. J. Quantum Chem., 124: e27348 (2024); https://doi.org/10.1002/qua.27348
- Fatemeh Mollaamin and Majid Monajjemi, Molecular Simulation, 49, 4: 365 (2023); https://doi.org/10.1080/08927022.2022.2159996
- S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58, No. 8: 1200 (1980); https://doi.org/10.1139/p80-159
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., Gaussian 16, Revision C.01 (Wallingford CT: Gaussian, Inc.: 2016).
- R. Dennington, T. A. Keith, and J. M. Millam, GaussView 6.0.16 (Semichem Inc.: 2016).
- Zihan Xu, Chenglong Qin, Yushu Yu, Gang Jiang, and Liang Zhao, AIP Advances, 14: 055114 (2024); https://doi.org/10.1063/5.0208082
- A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 9: 5397 (1990); https://doi.org/10.1063/1.458517
- H. L. Schmider and A. D. Becke, Journal of Molecular Structure: THEOCHEM., 527, Nos. 1–3: 51 (2000); https://doi.org/10.1016/S0166-1280(00)00477-2
- A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 9: 5397 (1990); https://doi.org/10.1063/1.458517
- V. Tsirelson and A. Stash, Acta Cryst., B58: 780 (2002); https://doi.org/10.1107/S0108768102012338
- I. Mayer, Chemical Physics Letters, 544: 83 (2012); https://doi.org/10.1016/j.cplett.2012.07.003
- F. Mollaamin, M. T. Baei, M. Monajjemi, R. Zhiani, and B. Honarparvar, Russ. J. Phys. Chem., 82, 2354 (2008); https://doi.org/10.1134/S0036024408130323
- Tian Lu and Feiwu Chen, J. Phys. Chem. A, 117: No. 14: 3100 (2013); https://doi.org/10.1021/jp4010345
- Xiyi Wang, Xuefeng Zhang, Witold Pedrycz, Shuang-Hua Yang, and Driss Boutat, Fractal Fract., 8: 523 (2024); https://doi.org/10.3390/fractalfract8090523
|